
Calculating Latencies in an Engine
Management System Using

Response Time Analysis with MAST
Juan M. Rivas

J. Javier Gutiérrez
J. Medina

Michael González Harbour

University of Cantabria, Spain
Software Engineering and Real-Time Group

FMTV 2016 Toulouse, July 2016

MAST

2

• To model, analyze and optimize hard real-time systems
• Open Source (Ada). Available at www.mast.unican.es

System
Description Results

✓ PD
✓ NPD
✓ HOSPA
✓ FP + EDF

Optimization Tools

✓ Slack calculation
✓ System, processing resource, e2e flow, etc.

✓ Shared resources
✓ Multi-path e2e flows
✓ Sporadic and Polling servers
✓ Networks (AFDX), Partitioned systems

✓ Modelling (graphical editor, UML)
✓ Simulator
✓ Results viewer

MAST

Response-Time Analysis Tools

✓ Holistic
✓ Offset-Based

✓ Slanted
✓ Brute Force
✓ Precedence opt.

✓ FP + EDF

http://www.mast.unican.es

MAST Model

3

Step Step

Schedulable
Resource
(Thread)

Scheduling
Parameters

Scheduler

Processing
Resource

Operation

Mutual
Exclusion
Resource

Timing
Requirement

Real-time situation view

Concurrent architecture
view

Operations view Platform
view

End-to-end flow

Event Event Event

Event
Reference

MAST Model for analysis
• End-to-end flows, aligned with OMG MARTE

4

Thread 1 Thread 2 Thread 3

ɸi2

Di

Step
!i1

Step
!i2

Step
!i3

Step
!i4

ei

Periodic (Ti)
Sporadic (Tmin,Tmax)

• Steps: Worst-case execution time (Cij), Best-case execution time (Cbij)

• Threads: Priority (Prioij), Processor (Procij), Preemptive/Non-preemptive

• Results from response time analysis:
‣ Global response time: worst-case (Ri), best-case (Rb

i)
‣ Local response time: worst-case (rij), best-case (rb

ij)

ri2
rb

i2 Ri4=Ri

Rb
i4=Rb

i

Amalthea to MAST transformation

Amalthea Task

InstructionsInstructionsInstructions

Labels
written

Labels
read

Runnable 1 Runnable 2 Runnable 3

Priority = P

• 21 Tasks
• Statically assigned to a core
• Fixed Priority: preemptive/

cooperative
• Released by stimuli: periodic/

sporadic (arbitrary phasing)
• D=T
• Series of Runnables

Amalthea Tasks

• 1250 Runnables
• Read labels (memory)
• Instructions: constant/deviation
• Write labels (memory)

Amalthea Runnables

• 10000 Labels
• Mapped to GRAM/LRAM
• Local RAM = 1 cycle
• Non-Local RAM = 9 cycles

Labels

Stimulus

Period: T
Sporadic: [Tmin, Tmax]

WCET of steps = instructions + worst-case memory accesses

Amalthea
Task

MAST Thread

Step !i1 Step !i2 Step !i3 MAST
End-to-end Flow

Priority = P

ei
Period: Tmin

C12

Memory Accesses
• Modeled as execution time added to the steps

• Worst-case cost of accessing the labels
‣ Assumes all cores accessing the same memory at the same time

• Best-case cost of accessing the labels
‣ Assumes no other core is accessing the same memory

• Example with all labels in GRAM (Challenge 2):

6

CORE0 GRAM
9 cycles

CORE0 access a label
located in GRAM CORE1

CORE2

CORE3

9 cycles

9 cycles

9 cycles

Worst-case cost of accessing a label = 9 cycles + 3*9 cycles = 36 cycles
Best-case cost of accessing a label = 9 cycles

Cooperative Scheduling
• Cooperative tasks can be preempted by higher priority…
‣ Preemptive tasks at any moment
‣ Cooperative tasks at runnable borders

• Cooperative tasks suffer a blocking equal to the longest runnable of lower priority

• We can model the blocking in MAST with a dummy shared resource
‣ Accessed by the longest cooperative runnables

7

MAST
automatically finds

the longest
possible blocking

From a cooperative Amalthea Task

From a cooperative Amalthea Task

Step !11 Step !12 Step !13

e1

Period: Tmin
Step !14

Step !21 Step !22 Step !23

e2

Period: Tmin
Step !24

Mutual exclusion resource

Event-chain analysis (1/3)
• Latency model of data traversing non-consecutive runnables

1. Runnables from different Amalthea tasks: EffectChain_2 and EffectChain_3
2. Runnables from the same Amalthea task: EffectChain_1

• Runnables from different Amalthea tasks:

8

Stimulus

Stimulus

Stimulus

Period: T1

Period: T2

Period: T3

data
is read1 data

is processed
2

data
is written

3

that data is read
by another runnable

4

Event-chain analysis (2/3)
• Latency model of data traversing non-consecutive runnables

1. Runnables from different Amalthea tasks: EffectChain_2 and EffectChain_3
2. Runnables from the same Amalthea task: EffectChain_1

• Runnables from different Amalthea tasks:

9

!13!12

e1

!23!21

e2

!32!31

e3

Period: T1

Period: T2

Period: T3

MAST equivalent model

L=r11+T2+r22+T3+r33

Worst-case latency
assumes labels are written
just after they are going to

be read

Lb=rb11+rb22+rb33

Best-case latency assumes
labels are written just before

they are going to be read

r11

r22

r33

!11

!22

!33

Stimulus
Period: T1

Amalthea Task

Event-chain analysis (3/3)
• Runnables from the same Amalthea task:

10

Worst-case latency

L=(T1-Rb12)+R11
Best-case latency

Lb=(T1-R12)+Rb11

MAST equivalent model

e1

Period: T1
!13!12 !14 !15!11 !16

R11

Rb12 T1 - Rb12

Challenges
• Challenge 1: ignoring memory accesses
‣ Execution time of MAST steps comprised of only Runnable

instructions

• Challenge 2: all labels to GRAM
‣ Execution time of MAST steps comprised of Runnable

instructions + worst-case memory access costs

• Challenge 3: find optimized allocation of labels to
GRAM and LRAM
‣ Label optimization not supported in MAST, but….
‣ 83% of labels are accessed by only one core
‣ Proposal: Shared labels to GRAM, non-shared labels to their

core LRAM
- LRAM is accessed without contention (1 cycle access)
- GRAM is accessed as before (4*9=36 cycles access)

11

Evaluation

• Amalthea to MAST transformation (M2T)
‣ 10 minutes approx.

• Response-time analysis technique applied
‣ Offset-based Analysis with Precedence Relationships

Optimizations
‣ Better suited for end-to-end flows that stay in the same

processor
‣ 1-5 minutes to analyze each system

• Amalthea model has utilizations above 100%
‣ SCN-ACET: Mean value of instructions used as steps WCET
‣ SCN-WCET: Maximum value of instructions used as steps WCET
‣ Different clock speeds tested: [200, 233, 266, 300, 333, 350] Mhz

12

Results (Event-chains)

13

La
te

nc
y

(w
or

st
) (

m
s)

11

11,5

12

12,5

13

Clock frequency (Mhz)
200 233 250 266 300 333 350

La
te

nc
y

(w
or

st
) (

m
s)

18

19

20
21

22

23

24
25

26

27

Clock frequency (Mhz)
200 233 250 266 300 333 350

La
te

nc
y

(w
or

st
) (

m
s)

57

59

61

63

65

Clock frequency (Mhz)
200 233 250 266 300 333 350

SCN-ACET

SCN-WCET SCN-ACET

SCN-WCET

SCN-ACET SCN-WCET

EffectChain_1 EffectChain_2

EffectChain_3

no memory

all GRAM

optimized

optimized
all GRAM

no memory
optimized all GRAM

no memory

no memory

all GRAM

optimized

optimized
all GRAMno memory

no memory

all GRAM

optimized

• Latencies for the optimized
label allocation are closer to
the case ignoring memory
accesses

• Latencies for SCN-WCET can
only be obtained for 300Mhz
and above

Results (System Slacks)

14

Sy
st

em
 s

la
ck

 (%
)

-40

-20

0

20

40

60

80

100

Clock frequency (Mhz)
200Mhz 233Mhz 250Mhz 266Mhz 300Mhz 333Mhz 350Mhz

no memory

all GRAM

no memory

all GRAM

optimized

optimized

SCN-ACET

SCN-WCET

Positive slack: Percentage
by which the execution

times of the steps may be
increased while still

maintaining schedulability

Negative slack:
Percentage by which the

execution times of the
steps may be reduced to
achieve schedulability

Conclusions

• Demonstration of how MAST can be applied to this
kind of systems

• System is analyzed as a whole

• Results for the three challenges

• Workspace and results are available:
‣ www.istr.unican.es/members/rivasjm/workspace_fmtv16_public.zip

• Drawbacks
‣ Pessimistic modeling of memory accesses
‣ Pessimistic event-chain analysis
‣ Cannot calculate latencies when overloaded

- But sensitivity analysis can be performed

15

http://www.istr.unican.es/members/rivasjm/workspace_fmtv16_public.zip

16

Thank you for your attention!
Any questions?

