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Abstract—This work proposes a solution for the WATERS
industrial challenge 2019. The first part addresses the response
time analysis challenge and covers analyzing the end-to-end
latency of the given application by evaluating the critical path
from its sensor tasks to actuator tasks under the assumption
of an (i) implicit and (ii) LET based communication paradigm.
The second part discusses the optimization of the applications
end-to-end latency using a genetic algorithm based approach by
modifying (i) the application’s allocation of tasks to cores as well
as (ii) the time-slices for tasks allocated to the GPU.

Index Terms—Real-time systems, response-time analysis, auto-
motive, APP4MC

I. INTRODUCTION

The demands on automotive computing platforms are con-
tinuously rising due to the increasing amount of software
that is driven by new automotive functionalities. In order to
cope with these needs, future E/E architectures will consists
of a variety of heterogeneous applications with unique char-
acteristics, mixed levels of criticality and different models
of computation, such as classical periodic control, event-
based planning, or stream-based perception applications will
typically be co-existing on the same hardware platform [10].
Deploying these applications will introduce several challenges,
such as maintaining freedom from interference in safety-
critical application, as required by the ISO 26262 standard,
or meeting constraints such as timing requirements. The later
is especially challenging due to the varying computational
models.

The WATERS industrial challenge 2019 describes the proto-
type of such an end-to-end automotive driving application and
proposes two challenges typically encountered in designing
such systems. The application consists of 10 Tasks with 4
tasks that may further be accelerated by offloading to an
accelerator (GPU). The heterogeneous hardware platform is
split into two processor islands, with the first consisting of a
dual-core NVidia Denver 2 CPU and the second of a quad-
core ARM Cortex-A57 CPU. Additionally, the platform also
integrates a 256-core NVidia Pascal GPU grouped into two
streaming multiprocessors.

The research leading to these results has received funding from the Federal
Ministry for Education and Research (BMBF) under Grant 01IS18047D in
the context of the ITEA3 EU-Project PANORAMA.

The overall goal of the first challenge is to determine the
application’s end-to-end response time, e.g. the data propaga-
tion path from its sensor tasks to its actuator tasks. The second
challenge addresses the problem of minimizing the response
time of task chains by optimizing the application’s deployment
to the underlying hardware platform (NVIDIA Jetson TX2
SoM).

This paper is organized as follows. Our assumptions for
the remainder of this paper are introduced in Section II,
followed by the system model along with its notation and
terminology in Section III. Our proposed solution to the
analysis challenge is addressed in Section IV and presents the
approach for determining the application worst case response
time. Section V presents our solution to the design space
exploration (optimization) challenge, which is based on a
genetic algorithm that optimizes the application’s deployment
towards a lower end-to-end response time by modifying the
available degrees of freedom. Finally, VI discusses our results
and concludes this paper.

II. ASSUMPTIONS

The challenge states that all tasks, both for CPU and GPU,
follow a read-execute-write semantic, which implies an e.g.
implicit or LET communication paradigm. Accordingly, we
will determine the resp. end-to-end latency for both communi-
cation paradigms, although we expect implicit communication
to result in lower response times compared to LET as shown
in [4]. Moreover, we assume that all tasks access the global
memory (DRAM) exactly once at the beginning of their
execution for a copy-in operation and also exactly once at
the end of their communication for a copy-out operation, i.e.
all cores (CPU, GPU) contain a local memory that stores local
variable copies. Consequently, the time required for accessing
these local variables is assumed to be included in a task’s ticks
and as such out of the scope of this paper.

Furthermore, we assume that all operations of the CPU as
well as the GPUs Copy Engine (CE) and Execution Engine
(EE) are fully preemptive and the resulting delays of concur-
rent accesses are covered by an additional contention overhead.
All tasks are allocated to exactly one CPU core or the GPU.
The allocation and duration of each kernels time slice is fixed
at design time, i.e. tasks do not migrate at run-time. Finally, all



tasks on the CPU follow a partitioned fixed priority scheduling
policy whereas the GPU schedules its tasks using a weighted
round-robin (WRR) policy with fixed time slices. Priorities
for tasks are unique, i.e. two tasks with the same period have
different fixed priorities.

Since this work considers tasks τ ∈ T executed on hetero-
geneous processing units with different scheduling algorithms
and different characteristics, we distinguish between tasks
executed on the CPU and tasks offloaded to the GPU. Tasks
that are executed on the CPU are further divided into tasks that
perform offloading of some of its work to a GPU and regular
tasks that do not perform offloading. An offloading task can
be further subdivided into three phases: A (i) pre-processing
phase, that prepares a given data set for its processing on
the GPU, an (ii) offloading phase in which the task offloads
some of its execution to the GPU and suspends itself until it
receives a response from the GPU, and a (iii) post-processing
phase that processes the resulting data set from the GPU.
Moreover, offloading tasks can either perform synchronous or
asynchronous offloading. In the synchronous case, the task
will be actively blocking lower priority tasks while it is
being executed. In the asynchronous case, lower priority tasks
may be executed during its waiting phase at the cost of an
asynchronous offloading overhead that increases the offloading
tasks execution time. For the remainder of this work, we will
apply asynchronous offloading if tasks with lower priority are
executed on the same processing unit as the offloading task
in order to allow lower priority tasks to be executing during
the offloading tasks waiting phase. Synchronous offloading is
applied if no lower priority tasks are co-scheduled on the same
processing unit with the goal of minimizing the offloading
tasks execution time by avoiding the asynchronous offloading
overhead.

III. SYSTEM MODEL

Each task that is executed on a CPU τi ∈ T is described
as tuple τi = ({τi1, . . . , τi|τi|}, Pi, πi) with its period Pi a
unique priority πi, and a list of |τi| sub-tasks τij . A sub-task
can either be executed on the CPU or offloaded to the GPU. In
the former case, it is described as τCij = (Cij,ρ, Oij , Jij) with
an offset Oij and a jitter Jij . The set Cij,ρ = {C+

ij,ρ, C
−
ij,ρ}

denotes a pair of execution times on processing unit ρ, with
C+
ij,ρ being the best case execution time and C−ij,ρ the worst

case execution time.
A sub-task that will be offloaded to the GPU τGij ∈ T G is

similarly described as tuple τGij = (Cij,ρ, Oij , Jij , φij), with
φi being the length of its time slice for the WRR scheduling
on the GPU. Although the challenge assumes the presence of
a single GPU, some of the GPU tasks may be executed on the
CPU. Accordingly, we maintain the concept of distinguishing
between processing unit specific execution times for each
processing unit ρ.

Our approach utilizes hyper periods of task sets, i.e. we
address the k-th instance (job) of τi as τi.k. The relative
distance of a job’s arrival to the beginning of the hyper period
is represented by ri.k, and the relative distance to its worst case

response is denoted byR−i . Data is passed between tasks using
labels. A label l ∈ Lij represents a variable that is accessed
(i.e. either read or written) by a sub-task τij .

Finally, a task chain σni ∈ S is denoted as a finite
sequence of n ≥ 1 tasks (τ1, . . . , τn) and represents the data
propagation flow over the given task set, i.e. each path that
can be constructed from a job τm.α to a job τm+1.β needs
to satisfy the criteria rm+1.β ≥ rm.α +R−m, i.e. the absolute
arrival of the successor needs to occur after the response of
its predecessor.

IV. PROPOSED SOLUTION FOR ANALYSIS CHALLENGE

A. Task Chains

In order to determine the application’s end-to-end response
time, we have to derive longest data propagation path (critical
path) from any of its sensor tasks (i.e. a task with no
predecessor) to any of the actuator tasks (i.e. tasks with no
successor).

A convenient approach for this is to analyze the commu-
nication graph spanned by runnables and their label accesses
provided by the AMALTHEA model. However, the temporal
behavior is ambiguous due to labels with multiple read- and
write accesses from runnables executed by different tasks. For
instance, the label Cloud map host is both read and written by
runnables Lidar Function (Task Lidar Grabber) and Local-
ization Preprocessing (Task PRE Localization gpu POST)
(cf. Fig. 1a). Since both tasks can be executed in parallel,
it is impossible to determine which task realizes a source of
communication or a target. As a result, we decide to derive
the communication flow based on the challenge’s description
in [3] and ensure data consistency by introducing transitive
labels for task-to-task communication that ensure a proper data
flow by limiting the number of writers per label to one (cf.
Fig. 1b).

Lidar_Grabber

Localization 

n n+1 n+2

(a) (b)

Labels 

Fig. 1. Example of inconsistent data accesses due to multiple write sources
to a label (a) and with consistent accesses by adding transitive labels (b)

Since mapping decisions may lead to an excessively or even
indefinitely blocked task, each task within a data propagation
path may increase the path response time. Accordingly, we
consider all routes within the application from a sensor task to
the actuator task and specify appropriate task chains. Possible
sensor tasks for a critical path are identified as tasks without
incoming edges, i.e. the tasks Lidar Grabber, Detection, CAN,
SFM, and Lane Detection, whereas the sink is realized by
DASM, which is the only task without outgoing edge.

The task chains, that become part of our analysis, are further
specified in Tab. I.



TABLE I
IDENTIFIED TASK CHAINS

Task Chain Tasks
σ1 Lidar Grabber ⇒ Loc ⇒ EKF ⇒ Planner ⇒ DASM
σ2 CAN ⇒ Loc ⇒ EKF ⇒ Planner ⇒ DASM
σ3 SFM ⇒ Planner ⇒ DASM
σ4 Lane detection ⇒ Planner ⇒ DASM
σ5 Detection ⇒ Planner ⇒ DASM

B. End-to-end Latency

The applications end-to-end latency depends on the applied
communication paradigm and the corresponding time at which
data from one task is propagated to its follower in a task chain.
In the following, we describe the approaches for determining
a task-chains end-to-end latency for implicit and LET based
communication paradigms that will be used for deriving the
applications worst case end-to-end timing.

The worst case end-to-end latency of the application LE2E

can be determined by the highest latency among a set S of all
task chains, formally denoted as LE2E = maxσ∈S(LTC(σ))
with LTC being the function that determines the task chain
worst case latency.

Implicit communication: In order to determine the appli-
cations end-to-end latency while assuming an implicit com-
munication paradigm, we apply the approach from Kloda et
al. in [5].

The worst case latency of a task chain σn is derived by
analyzing the latency of each data propagation path that origi-
nates during the hyper period H = lcm{Pi|τi ∈ T }, which is
sufficient due to the recurring execution and communication
pattern.

LTC = max
∀k|kT1<H

LTC(σn, kT1) (1)

As shown in [5] , an upper bound for the worst-case latency of
task chains σn instance starting at time instant rp is determined
by Eq. 2, with the producer’s release time rp, the consumer’s
release time rc, and a sub-chain σn−1 that contains all tasks
from σn except for the first element.

LTC(σn, rp) ≤


(rc − rp) + LTC(σn−1, rc) n ≥ 2

R−p n = 1

(2)

We illustrate this function in Fig. 2, which shows 3 tasks
that form a task chain with a total latency of 14 time units.
Naturally, data propagation is delayed due to different periods
and arrival times of tasks. For instance, let us consider the first
sub-chain consisting of a producer τp, represented by Task A
with an release time rp = 54, and a consumer τc, represented
by Task B that arrives at rc = 56. The latency due to different
arrival times is rc − rp = 2 time units, and the task chains
total latency becomes 2 +LTC(σn−1, 56). In the second sub-
chain, Task B becomes the producer τp and arrives at time
instant rp = 56, whereas the next consumer (Task C) capable
of processing the producers output arrives at instant rc = 60.

Accordingly, the delay becomes rc − rp = 4 time units, plus
the worst case response time of Task C (8 time units), leading
to the chains total WCRT of 14 time units.

54 56 60 68 

Task A

Task B

Task C

Fig. 2. Data propagation flow in a task chain with 3 tasks

The release time rc of a consumer τc, is derived by Eq. 3.
If both, the consumer as well as the producer are allocated
to the same processing unit, and the producer has a higher
priority compared to the consumer, any job of the consumer
that satisfies rc ≥ rp will always be executed after the
resp. producers job. Accordingly, a safe release time for the
consumer that guarantees that it will read the most recent
output of the producer is derived by the first case in Eq. 3.
In all other cases, only a consumer that is released after the
producer finishes its work, i.e. rc > rp +R−p , will be capable
of reading the producer’s output.

rc =



⌈
rp
Tc

⌉
Tc iff π(τp) > π(τc) and P (τp) = P (τc)

⌈
rp +R−p

Tc

⌉
Tc otherwise

(3)
LET Communication: The applications end-to-end latency

is determined using an adjusted variant from [5] that allowed
an efficient implementation for this challenge. Due to the lack
of space we omit a detailed description.

C. Response Time

Before we present an approach for determining the worst
case response time in the given heterogeneous architecture,
we need to analyze if and how tasks scheduled on different
processing units impact each other. Therefore we illustrate the
execution of a very simple heterogeneous example system with
similar characteristics to the challenge in Fig. 3.

The system consists of four tasks τ1 − τ4 and three pro-
cessing units Core1, Core2 and GPU. Tasks τ2 and τ3 denote
regular tasks while τ1 and τ4 denote offloading tasks. An
offloading task τx is further subdivided into
• τCx1, being its pre-processing phase
• τGx2, being its offloading or suspension phase that starts

as soon as its sub-task is launched on the accelerator and
lasts until the accelerator finished its execution, and

• τCx3, being its post-processing phase that is instantly
released once the task offloaded to the GPU finishes
execution.
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Fig. 3. Example of schedule with 3 tasks executed by 2 CPUs and 2 offloaded
tasks to the GPU.

It becomes apparent that an offloading task follows the
same periodic activation pattern on both, the CPU as well as
the GPU. However, each subsequent phase of the offloading
task is delayed by a minimum offset equal to the best case
response time of the previous phase (cf. Fig. 3, 2nd iteration),
and a maximum offset equal to the worst case response time
(cf. Fig. 3, 4th iteration). In other words, the release of the
suspension phase will occur no earlier then the best case
response time of its pre-processing phase, and no later then
the pre-processing phases worst case response time. In order
to consider this behavior during our response time analysis,
we need to adjust the values for offset and jitter for offloading
and post-processing phases. Without loss of generality, we can
describe this dependency by reformulating the notation from
[7] for subsequently released sub-tasks τij belonging to the
same task τi as presented in Eq. 4.

∀j = {2, . . . , |τi|} :
Oij = R+

ij−1
Jij = R−ij−1 −R

+
ij−1

(4)

As both of our scheduling specific response time analy-
sis approaches applied in the following sub-sections have a
monotonic dependency of the response time on the jitter terms
[7], an iterative algorithm will guarantee the jitter value to
converge.

In the following subsections we will present the respective
response time analysis approaches for tasks executed on the
CPU resp. on the GPU.

1) Tasks execution on the CPU: Tasks executed on the
CPU follow a fully preemptive fixed priority based scheduling
strategy. As their total computation time needs to account
times for memory access, we begin by determining the total
execution time for each sub-task that is scheduled on the CPU.
As presented in the previous section, we need to consider
bounds for the best resp. worst cases. Since the calculation
for both cases is generally the same and only differs in the
values that are used for Cij,ρ and Aρ, i.e. C+ij,ρ and A+

ρ for

the best case as well as C−ij,ρ and A−ρ for the worst case, we
provide a general notation that can be applied for both cases.

The total execution time Wij of a sub-task executed on
the CPU consists of the raw processing time Cij,ρ for the
processing unit ρ, and the delays introduced by accessing
labels and contention effects caused by other processing units
(CPU, GPU) accessing shared resources such as e.g. DRAM.
We formalize this behavior in Eq. 5 with Aρ being the access
time for accessing the shared memory from a processing unit ρ
and λi being the numbers of memory accesses. For simplicity,
we sum up the read and write accesses, since both have the
same access time in the given challenge.

Wij = Cij,ρ + λij · Aρ (5)

The number of memory accesses is trivially calculated by
summing up the number of memory accesses per label l in
Eq. 6, with Lij being the set of labels accessed by sub-task
τij .

λij =
∑
l∈Lij

⌈
size(l)

size(cacheline)

⌉
(6)

In order to determine the worst case response time of any
task τi, we need to identify the response time of its last sub-
task τi|τi| in Eq. 7.

R−i = R−i|τi| (7)

What remains now is deriving bounds on the best resp. worst
case response times R+

ti and R−ti for each of the sub-tasks.
A good approximation for the best case response time can be
obtained by summing up the total computation times of a tasks
predecessors including itself as shown in Eq. 8 [7].

R+
ij =

∑
k=1...j

W+
ik (8)

The problem of finding the worst case response time in
task sets with offsets has been shown to be NP complete
by Tindell et al. [11] as it exponentially grows with the
number of tasks. Although the challenge subject to this paper
consists of a comparatively small example with 10 tasks, the
analysis presented in this section will become part of the
optimization challenge addressed in Sec. V, which again is
a NP complete problem. Consequently, we find it desirable to
apply an efficient approximation that will not only scale well
with larger problem sizes, i.e. have a polynomial efficiency,
but also provide solutions close to the exact response time
analysis.

Therefore, we focus on the upper-bound approximation
approach that has been developed by Tindell et al. [11] and
later refined by Palencia et al. [7] for tasks with dynamic
offsets.

The maximum response time R−ij for a given sub-task τij
is obtained by Eq. 9 [7] by checking every critical instant
for an instance p that falls into the tasks busy period, with the
function hpi returning all higher priority sub-tasks that belong
to task τi.

R−ij = max
∀c∈hpi(τij)∪τij

[
max

p=p0,ijc,...,pL,ijc

(Rijc(p))
]

(9)



The response time for a given instance p when the critical
instant coincides with the activation of task τic is then derived
by Eq. 10 [7] by subtracting the phase between both tasks and
it’s release time from the absolute response time, and adding
it’s offset.

Rijc(p) = wijc(p)− Φijc − (p− 1)Ti +Oij (10)

Due to lack of space and since we did modify the original
approach, we omit a further description and refer to the
original source in [7] for a complete formulation of the
remaining functions.

2) Tasks executed on the GPU: Sub-tasks being executed
on GPU’s (kernels) follow a weighted round robin scheduling
policy. A context switch to the next queued kernel occurs
(i) after the kernels predefined time slice elapses or (ii) the
execution is finished, whichever is encountered first. Since
kernels also follow a strict read-execute-write policy, their total
execution timeWG

ij needs to account the copy engines copy-in
CCEin resp. copy-out CCEout operations along with the execution
engines execution time CEE (Eq. 11).

WG
ij = CCEinij

+ CEEij + CCEoutij (11)

The delay introduced by the copy engines copy-in and copy-
out operations is derived similarly to the memory access of
CPU tasks. In order to create or copy back a local label, the
memory has to be accessed twice. Due to the equal access
times for read and write accesses, the duration of a copy engine
can be determined equivalently to Eq. 5 by multiplying the
number of accesses λij by the access time Aρ and the scale
2 to account the resp. write access for each read access in
Eq. 12.

CCEinij
+ CCEoutij = 2 · λij · Aρ (12)

Similar to tasks executed on the CPU, this approach can be
used in determining both, worst as well as best case execution
times by considering the resp. execution and access times C+

ij

and A+
ρ and vice versa.

For the remainder of this section, we adapt the approach in
[8] for determining the best and worst case response times in
weighted round robin scheduled tasks by checking different
time windows for a given busy period.

With a single stream, a sub-tasks τij worst case response
time RG−ij is derived (slightly reformulated compared to [8])
as presented in Eq. 13 by determining the maximum of all
response times RG−ij (q) for the q-th time window of the busy
period, with n+ij(∆t) being an arrival function that returns the
maximum number of activations for the given interval ∆t [9].

RG−ij = max
1≤q≤n+

ij(wij(q))

(
RG−ij (q)

)
(13)

The execution time for the first q number of activations includ-
ing all interferences I caused other tasks that are executed on
the GPU is given by wij(q) in Eq. 14.

wij(q) = q · WG−
ij + Iij(q) (14)

The response time for a given time window RG−ij (q) is
then derived in Eq. 15 by subtracting the earliest absolute

release time δ−ij(q) [9] of the q-th time window from the total
execution time.

RG−ij (q) = wij(q)− δ−ij(q) (15)

For determining the individual interference Iij(q) for the q-
th time window as well as the modifications required for
determining the best case response time RG+

ij , we refer to
the original work in [8].

3) Memory Access Latency: As stated in the challenges
description [3], the time for reading or writing to the memory
Aρ from processing unit ρ can be calculated by Eq. 16 for
CPUs resp. Eq. 17 for GPUs, with CCρ being the number
of cycles for accessing the memory, fρ the processing units
frequency, and ζ the numbers of processing units concurrently
accessing the memory. Moreover, the constant κρ annotates
the increase in latency for each interfering CPU, whereas γρ
represents the increase in latency if the GPU’s copy engine is
performing operations.

Aρ =
CCρ
fρ

+ κρ · ζ + γρ (16)

Aρ =
CCρ
fρ

+ 0.5ns · ζ (17)

In the following, we illustrate the worst case in which all
ζ = 5 neighboring cores as well as the GPU’s copy engine
cause contentions. Given the provided values for κρ and γρ in
[3], the previous equations can be simplified into a worst case
access time A−ρ in Eq. 18.

A−ρ =


220 ns for CPUs (A57)
38 ns for CPUs (Denver)
6 ns for GPUs

(18)

For the best case, we assume that none of the neighboring
cores cause contention, which leads to the best case access
time A+

ρ in Eq. 19.

A+
ρ =


20 ns for CPUs (A57)
8 ns for CPUs (Denver)
3 ns for GPUs

(19)

4) Results for analysis model: The results of our analysis
are presented in Tab. II using the notation from Sec. III. Tasks
denoted with an asterisk (*) represent offloading tasks that are
executed on the CPU iff the offloaded task is being executed
on the GPU. It becomes apparent that task Planner cannot
be scheduled as it’s total worst case execution time Wi =
12.4+0.8 = 13.2ms exceeds its period T = 12. Accordingly,
we decide to reduce its number of ticks by 10% in order to
make it schedulable on a Denver core while maintaining a
tight bound.

As the remaining model is not schedulable due to it’s
allocations [3], we will apply the remainder of our analysis,
i.e. the end-to-end analysis and the response time analysis,
on the feasible solution that is generated in the design space
exploration challenge.



TABLE II
WORST CASE EXECUTION-, AND COMMUNICATION TIMES FOR EACH TASK AND PROCESSING UNIT

Denver A57 Pascal
Name P C− C+ λ · A− λ · A+ C− C+ λ · A− λ · A+ C− C+ λA− λA+

DASM 5 1.3 1.0 0.0 0.0 1.9 1.3 0.0 0.0 - - - -
CANbus polling 10 0.6 0.4 0.0 0.0 0.6 0.4 0.0 0.0 - - - -

Planner 12 12.4 9.5 0.8 0.2 13.2 9.6 4.4 0.4 - - - -
EKF 15 4.4 4.1 0.0 0.0 4.8 4.0 0.0 0.0 - - - -

Lidar Grabber 33 10.9 9.8 2.1 0.4 13.7 10.2 12.0 1.1 - - - -
SFM 33 27.8 22.2 2.4 0.5 29.5 24.1 13.9 1.3 7.9 7.0 0.4 0.2

SFM* 33 6.7 5.4 3.6 0.8 7.9 6.3 20.8 1.9 - - - -
Lane detection 66 42.2 38.4 2.4 0.5 51.0 47.8 13.8 1.3 27.3 24.5 0.4 0.2
Lane detection* 66 7.6 6.1 2.4 0.5 8.3 6.8 13.8 1.3 - - - -

OS Overhead 100 50.0 50.0 0.0 0.0 50.0 50.0 0.0 0.0 - - - -
Detection 200 - - - - - - - - 116.0 108.0 0.5 0.3
Detection* 200 4.1 3.0 3.3 0.7 4.7 4.0 19.0 1.8 - - - -

Localization 400 294.8 276.7 1.8 0.4 387.4 366.5 10.3 0.9 124.0 117.0 0.3 0.1
Localization* 400 14.5 6.1 1.8 0.4 17.6 7.3 10.3 0.9 - - - -

V. PROPOSED SOLUTION FOR OPTIMIZATION CHALLENGE

Our scope in the optimization challenge lies in minimizing
the applications end-to-end latency, i.e. the term LE2E =
maxσ∈S(LTC(σ)) as specified in the previous section. With
regard to the communication paradigms, the only approach
for reducing the end-to-end latency in LET communication
would be in modifying the task’s period Pi which is out of
the scope of this paper, therefor we will focus on finding a
feasible allocation for this case that ensures schedulability.

For the implicit case, the applications latency can be
optimized by altering a task’s worst case response times.
Consequently we will use the tasks priority, the allocation from
tasks to processing units, and time slices for tasks offloaded
to the GPU as a degree of freedom in our approach.

For priority assignment, we apply Audsleys approach [1]
that will determine priorities leading to a feasible schedule,
and combine it with the recurrent-relation for assigning offsets
and jitters for tasks performing offloading. The remainder
of our optimization is performed by genetic algorithm based
approach that aims at minimizing the applications end-to-end
latency. It is implemented in Java using the open source library
Jenetics [12] and extends the native DSE capability [6] of
App4MC. The genetic algorithm has been executed on an
Intel Core i5-3570K quad-core CPU operating 3.4 GHz with
an initial population of 500 randomly initialized individuals
and a termination criteria of 1000 iterations after a steady, i.e.
non-improving, fitness value.

The applications end-to-end latency for each of the previ-
ously described task-chains is illustrated in Tab. III, with the
deployment leading to these results in Tab. IV. The deploy-
ment was found after approx. 5 minutes, with the majority
of cpu time (287 out of 291 seconds) taken by the fitness
calculation as described in Sec. IV.

We can observe that implicit communication slightly (3%−
28%, avg. 10%) outperforms LET communication, which
seems convenient considering that the response times of those
tasks that form a task chain are very close to the resp. task’s

TABLE III
WORST-CASE END-TO-END LATENCY FOR LET COMMUNICATION (LEFT)

AND IMPLICIT COMMUNICATION (RIGHT)

Task Chain LET end-to-end Implicit end-to-end
σ1 886 859.9
σ2 865 836.9
σ3 67 59.9
σ4 100 71.9
σ5 230 221.9

TABLE IV
WORST CASE EXECUTION-, COMMUNICATION, AND RESPONSE TIMES FOR

TASKS

Name P π C− λ · A− R− φ

Core 0 (Denver)
Planner 12 9 11.2 0.8 12.0 −

Core 1 (Denver)
SFM* 33 6 6.7 3.6 31.5 −

Lane detection 66 2 42.2 1.2 53.6 −
Core 2 (A57)

CANbus polling 10 5 0.6 0.0 0.6 −
EKF 15 1 4.8 0 5.4 −

Core 3 (A57)
Localization 400 4 387.4 5.2 392.6 −

Core 4 (A57)
Lidar Grabber 33 8 13.7 12.0 25.7 −

Detection* 200 7 4.7 1.8 198.0 −
Core 5 (A57)

OS Overhead 100 0 50 0.0 79.9 −
DASM 5 3 1.9 0.0 1.9 −

GP10B (GPU)
Detection 200 − 116.0 0.5 166.2 375

SFM 33 − 7.9 0.0 19.9 11.6

period. As expected, one of the Denver cores is forced to
exclusive execute the task Planner due to a lack of alternatives.

VI. CONCLUSION AND OUTLOOK

This work presents an approach for analyzing the end-to-end
latencies in applications for heterogeneous embedded systems.



It provides an detailed description on the challenges when
(i) analyzing the application’s end-to-end response time and
(ii) minimizing it by optimizing the application’s deployment.
Since the initial system was not schedulable under our worst-
case assumption (i.e. the total worst case execution time of
task Planner exceeded its period), we reduced the number of
ticks by 10% for the task planner only. We have presented our
results for both challenges, consisting of the applications worst
case response time (σ1) for the implicit and LET communi-
cation paradigms as well as the worst case execution times,
worst case communication overheads including contention,
worst case response times, and the optimized and feasible
deployment of the application.

Due to the complexity of the WATERS2019 challenge and
the time required to fully comprehend the essential character-
istics we had to narrow down the scope of our contribution,
leaving room for future work we would like to address in the
future.

While our current solution only covers a single streaming
multiprocessor, it would be desirable to further exploit the
hardware’s capabilities by utilizing both SMs while consider-
ing any contention effects this would introduce. Moreover, we
plan to consider other scheduling approaches that allow e.g.
migrating tasks at run-time. Finally, we would like to back-up
our findings with benchmarks of the prototypical application
by executing these on a NVidia TX2 in order to increase the
accuracy of our approaches.
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