
WATERS Industrial Challenge 2017 with Prelude
Frédéric Boniol

ONERA, Toulouse, France
Email: frederic.boniol@onera.fr

Julien Forget
Univ. Lille, France

Email: julien.forget@univ-lille1.fr

Claire Pagetti
ONERA/ENSEEIHT/TUHH

Email: claire.pagetti@onera.fr

I. PROBLEM DESCRIPTION

In this section we describe our understanding of the
AMALTHEA semantics [1] and of the questions raised by the
WATERS challenge [2], [3].

A. Software model

The software model1 is composed of:
1250 runnables. A runnable is a piece of code that reads a set
of labels and writes another set of labels (these two sets are not
necessarily disjoint). As an example, Runnable 100ms 246
reads the labels {Label 4530, Label 3583, Label 4338, La-
bel 316, Label 2354, Label 4455, Label 5707, Label 7334,
Label 7864} and writes the labels {Label 65, Label 2560,
Label 9604, Label 9660}.

A best-case execution time (BCET) and a worst-case ex-
ecution time (WCET) are provided for each runnable. For
instance, the execution time of Runnable 100ms 246 belongs
to [8951, 32363] (in micro-seconds).

The activation of a runnable can be of two types:
• Periodic: for instance Runnable 100ms 246 has a period

of 100 ms;
• Sporadic: for instance the inter-arrival time of runnable

Runnable sporadic 900us 1000us 4 is 900µs at mini-
mum and 1000µs at maximum.

10000 labels. These serve as the communication variables
between runnables. A label can be read by several runnables
but can only be written by at most one, which we will call
the producer of that label. We assume that a label that is
not consumed by any runnable is an external output of the
system (i.e. data sent to an actuator) and that a label that is
not produced by any runnable is an external input (i.e. data
originating from a sensor). Since variables shared between
runnables are all explicitly declared as labels (no hidden side-
effects), we can analyze data-dependencies, latencies, etc.
21 tasks. A task is a group of runnables. There are two types
of tasks:
• Periodic task: it regroups runnables of the same period.

For instance Task 100ms contains a set of runnables
Runnable 100ms X with X ∈ [0, 246]. Inside a task,
runnables are called in sequence, as described in the
task call graph (in this example, the call graph follows
the order defined by the X index mentioned previously).
There is a total of 10 periodic tasks as described in table
I. There are two types of periodic tasks:

1ChallengeModel w Label- Stats fixedLabelMapping App4mc v072.amxmi.

– Preemptive: when such a task is released, it can
preempt at any time any task with a lower priority.
All periodic tasks with period lower than 10 ms are
preemptive;

– Cooperative: when such a task is released, it can
preempt tasks with lower priority, but only between
two runnable executions.

• Sporadic task: it regroups runnables that have the same
minimal and maximal inter arrival times. These tasks are
named as ISRX with X ∈ [1, 11]. These tasks are all of
type Preemptive (as defined above).

B. Platform model

The architecture considered for the challenge [2], [3] is
shown below.

core 0

LRAM0

core 1

LRAM1

core 2

LRAM2

core 3

LRAM3

Crossbar

GRAM

Each core X has a frequency of 200MHz and is associated
with a private local memory (scratchpad memory) denoted as
LRAMX . Memory access times, assuming no contention, are
the following:
• Access to the local LRAM: 1 cycle;
• Access to a distant LRAM: 9 cycles;
• Access to the GRAM: 9 cycles.

The LRAMs are single-ported, meaning that if two cores
access the same local memory concurrently there is conflict
that will be solved with a FIFO policy.

C. Execution model

The execution model of AMALTHEA assumes the following
rules:

1) Rule 1 – fixed-priority partitioned scheduling: tasks
are statically allocated to cores, this a priori mapping is
given in table I. On each core, a RM (rate monotonic)
scheduling policy is applied. Task priorities are thus
assigned as follows: the highest priority tasks are the ISR
tasks, they are ordered by priority in Table I (decreasing
from left to right), then come the periodic tasks (ordered
according to the same rule). Preemptions depend on the
task type (preemptive or cooperative).

2) Rule 2 – fixed memory mapping: Task sections are
allocated on the local LRAM of the core where the

Periodic 1ms 6660µs 2ms 5ms 10ms 20ms 50ms 100ms 200ms 1000ms
Number of runnables 41 146 27 22 303 306 45 246 14 43
Allocated core 1 1 2 2 3 2 2 2 2 2
Sporadic ISR10 ISR5 ISR6 ISR4 ISR8 ISR7 ISR11 ISR9 ISR1 ISR2 ISR3
min 700 900 1100 1500 1700 4900 5000 6000 9500 9500 9500
max 800 1000 1200 1700 1800 5050 5100 6100 10500 10500 10500
Number of runnables 4 5 3 8 7 5 4 2 4 2 3
Allocated core 0 0 0 0 0 0 0 0 3 3 3

TABLE I
TASKS DESCRIPTION

task executes, along with all the labels produced by the
runnables of this task. Note that a runnable may need to
access to a distant LRAM to read some labels produced
by runnables allocated to a different core;

3) Rule 3 – LET communication (between tasks): The
LET model originates from GIOTTO [4], which follows
a time-triggered approach to specify and implement
embedded systems. With LET communication tasks read
data at their activation and write data (to local LRAM)
at their deadline;

4) Rule 4 – Implicit communication (between runnables
of the same task): The implicit communication seman-
tics, proposed by AUTOSAR, is quite similar to LET
except that data is updated at the start and at the end
of the runnable execution (instead of at activation/dead-
line).

task invokation

release terminate

Logical

{ Logical Execution Time (LET)

Physical

{
start suspend resume endread labels write labels

Implicit

{
Fig. 1. LET communication and implicit communication

The top part of figure 1, strongly inspired from [5], illus-
trates the LET semantics; whereas the bottom part illustrates
the implicit communication semantics. Dashed rectangles de-
pict at what time labels are updated. According to Rule
3, Task 10ms has a LET of [0,10]. Thus at every time
t = k × 10 + ε (with k ∈ N), the executive layer is
in charge of copying all labels read by the task runnables
into local variables. At every time t = k × 10 − ε (with
k ∈ N\{0}), the executive layer is in charge of copying all
local variables produced by the task runnables into labels.
Note that since all periodic tasks are synchronous, at time
0 (which is the critical instant) all the labels are copied first
before starting the execution of any task. Now, considering
the runnables inside Task 10ms, according to Rule 4, when
Runnable 10ms X starts executing, it first copies all the read
labels produced by Runnable 10ms Y to local variables. When

it completes execution, it updates the its produced labels for
the Runnable 10ms Y.

II. PRELUDE IMPLEMENTATION

PRELUDE [6], [7] is a Synchronous Language for program-
ming real-time embedded control systems, which provides
real-time primitives to support multi-periodic systems. The
preludec compiler generates multi-task C code, that is inde-
pendent of the target scheduling policy and of the number of
cores. We propose to specify the AMALTHEA system with
PRELUDE and to address part of the challenge thanks to
PRELUDE features and tools. In this section, we explain how
to translate the system into a PRELUDE program.

A. Restrictions compared to the original specification

Restriction 1: Each sporadic task is translated into a peri-
odic task with period equal to the minimal inter arrival time.

PRELUDE can currently only deal with periodic tasks and
extending the language to sporadic tasks would require an
important effort.

Restriction 2: Labels types are not considered.

The AMALTHEA model only provides the size of each label
(in bits), while PRELUDE requires their data-type. This has
very limited impact on the challenge results.

Restriction 3: AMALTHEA tasks do not appear explicitly in
the resulting PRELUDE program.

Lifting this restriction would require to represent a task as a
hierarchical node. We did not do this part purely due to lack of
time. This has no impact on the results detailed in remainder
of this paper.

B. Structure of the PRELUDE challenge implementation

First all runnables are declared as imported node which
is the terminology to express that a program element is
implemented by external user-provided code.

Then, we assemble the imported nodes in the main node.
The main node also specifies the system inputs, or sensors, and
the system outputs, or actuators. The code 1 gives an extract
of this assembly node. For instance, Label 5707 is a sensor
and Label 9944 is an actuator. We chose to assign the rate
of a sensor based on the rate of its fastest consumer, so for
instance Label 5707 has period of 100000µs. The rate of an

actuator is the rate of its producer, so for instance, Label 9944
has period 5000µs.

Code 1 (Part of the assembly description in PRELUDE):

node main (Label 5707 : i n t r a t e (1 0 0 0 0 0 , 0) ; . . .)
r e t u r n s (Labe l 9944 ; . . .)
var Label 65 , . . .
l e t

(Label 65 , Label 2560 , Label 9604 , Labe l 9660)=
Runnable 100ms 246 (Label 4530 , Label 3583 , Label 4338 ,

Label 316 , Label 2354 , Label 4455 , Label 5707 ,
Label 7334 , Labe l 7864) ;

(Label 1418 , Label 4530 , Label 2556 , Labe l 742)=
Runnable 100ms 239 (. . .) ;

. . . =Runnable 100ms 36 (. . . , 0 fby Label 65 , . . .) ;

(Label 2492 , Label 3543 , Label 4704 , Labe l 9944)=
Runnable 5ms 0 ((0 fby Label 744)∗ ˆ 2 , (0 fby Label 586)∗ ˆ 2 ,

0 fby Label 1394 , Labe l 1779 / ˆ 1 0 ∗ ˆ 3) ;
. . .

t e l

The main node instantiates the imported nodes and describes
their data-dependencies using a set of equations (the let..tel

block). In the remainder of this section we detail our imple-
mentation of label communications.

a) Multi-periodic task communications: In data-flow lan-
guages, task execution rates are driven by data rates. Further-
more, the synchronous semantics of PRELUDE requires that
the inputs and outputs of an imported node all have the same
rate. For instance, since input Label 5707 has a period of
100000µs, so does node Runnable 100ms 246 and so does
label Label 65.

The clock calculus raises an error if an imported node tries
to combine flows of different rates. So, when a runnable
consumes a label produced by a runnable operating at a
different rate, the programmer must specify how to perform
the rate transition. In PRELUDE, this is done via the operators
/ˆ and ∗̂ : /ˆq produces a flow q times slower, while ∗̂ q pro-
duces a flow q times faster. The equation of Runnable 5ms 0
illustrates rate transitions. Let us for the moment ignore the
fby operator, which will be explained later. Label Label 744
is accelerated by a factor of 2, because it was produced by the
task Task 10ms. The label Label 1779 is decelerated by 10
and accelerated by 3, because it was produced by ISR4 which
has a period of 5000/10× 3 = 1500µs.

b) Intra-task communications: In the AMALTHEA
model, inside a task runnables are called in sequence and
consume labels of runnables of the same task according
to the implicit communication semantics (Rule 4). In PRE-
LUDE, the execution order depends on data-dependencies:
data-consumer executes after data-producer. For instance,
Runnable 100ms 246 consumes the label Label 4530 which
is produced by Runnable 100ms 239. The communication is
direct (no operator applied), so Runnable 100ms 239 must
execute before Runnable 100ms 246. The labels produced by
Runnable 100ms 246 and consumed by other runnables of the
same task period cannot be consumed with a direct commu-
nication (in the AMALTHEA model, Runnable 100ms 246 is
the last runnable of the call graph of Task 100ms). Therefore,

the communication is indirect and requires a delay of one
period. This is achieved in PRELUDE by using operator fby
(for instance Label 65 for Runnable 100ms 36).

c) LET semantics: According to Rule 3 any communica-
tion between runnables with different periods must follow the
LET model. This is achieved in PRELUDE by adding a fby
before the rate transition. For instance, for Runnable 5ms 0,
Label 744 is first delayed and then accelerated.

C. Automatic translation of Amalthea specification in PRE-
LUDE program

We have implemented an automatic translator from
AMALTHEA to PRELUDE, which is not restricted to the pro-
gram provided for the challenge but should also be applicable
to other AMALTHEA programs. It was written in Ocaml and
consists of about 2000 lines of code, half of which is code re-
use from the Prelude compiler. We pruned some data unused
for our analysis: the hardware model, the OS model and
the event model (which only states that all runnable have
deadlines equal to their periods), are ignored. The mapping
model is used for analysis but is not part of the resulting
PRELUDE program. The PRELUDE program file resulting from
the translation is approximately four times smaller than the
AMALTHEA program (mainly due to the verbosity of the xml
format used by AMALTHEA).

III. LATENCY COMPUTATION

We answer in this section to the challenge issue 4, and
we show that we can compute end-to-end latencies directly
at the specification level (i.e. directly on the PRELUDE pro-
gram) without considering the actual implementation and its
execution platform.

A. Effect chains and end-to-end latencies

An effect chain is a functional path C = (r1
x1→ r2

x1→
. . .

xn−1→ rn) composed of n communicating runnables. Each
xi is a Label (i.e., a data-flow) produced by the runnable ri
and consumed by the runnable ri+1. An end-to-end latency
is the time required for performing this chain of computation,
from the start date of r1 to the end date of rn.

In the case of a multi-periodic chain (as EffectChain_2

and EffectChain_3), analyzing the end-to-end latency requires
to carefully consider how rate transitions are implemented.
For instance, let us consider an effect chain composed of two
runnables

C = (r1
x1→ r2)

such that the period of r1 is 100ms and the period of r2
is 200ms. r1 and r2 belong to two different tasks. First let
us consider that the tasks follow the LET semantics. The
dependencies scheme between r1 and r2 is depicted figure
2. The PRELUDE model of this chain is

CLET = (r1
x1→ fby /ˆ2→ r2)

As shown figure 2, the first instance of the chain begins at t=0
and goes through r11 (the first occurrence of r1), x11 (which

is delayed by one period compared to r11) and terminates at
t′ = 400ms at the end of r22 (the second occurrence of r2). Its
latency is 400ms. Similarly, the second instance of the chain
begins at t = 100ms, goes through r21 , x21 and terminates also
at t′ = 400ms at the end of r22 . Its latency is 300ms. Thus, the
worst case latency of the chain is 400ms, and it is achieved
every 200ms.

Fig. 2. Latency example in a bi-
periodic effect chain with the LET
semantics

Fig. 3. Latency example in a bi-
periodic effect chain with the direct
semantics

Let us consider now consider the case of a direct-
communication semantics: outputs are produced as soon as the
runnables terminate. In that case, r2 must wait for x1 before
starting its execution. The behavior of the chain following the
direct semantics is depicted Figure 3. The PRELUDE model of
this behaviour is:

Cdirect = (r1
x1→ /ˆ2→ r2)

In that case, the first instance of the chain goes through r11 ,
x11, r12 . The maximal end date of r12 being 200ms, then the
maximal latency of the first instance is 200ms. The second
instance of the chain begins with r21 at t = 100ms and
terminates at the end of r22 at most at t′ = 400ms. Its maximal
latency is 300ms. The worst case latency of the chain is then
300ms.

As shown in these examples, PRELUDE allows to auto-
matically compute maximal end-to-end latencies of functional
chains directly at the specification level [8]. We compute
latencies based solely on the semantics of the language,
thus the computed latency bounds are valid for any correct
implementation of the PRELUDE program, independently from
the scheduling policies (PRELUDE supports several of them)
and from the hardware platform (mono/multi-core, etc). That
way, latency requirements can be checked early on in the
development cycle, even without the target platform.

B. Effect Chain 1

Let us first consider EffectChain_1 = (r10ms149
L3423→

r10ms243
L3968→ r10ms272

L2276→ r10ms107) (where r10msX
is a shorthand for Runnable 10ms X and LY for Label Y).
This chain only involves runnables of period 10ms, it is a
mono-periodic effect chain. The AMALTHEA model specifies
that the runnable r10ms107 is executed before r10ms272.
Therefore in PRELUDE, L2276 has to be delayed by a fby
operator before consumption by r10ms107. All the other
communications in the chain are direct. The PRELUDE model
of this chain is:
EC1,prelude = (r10ms149

L3423→ r10ms243
L3968→

r10ms272
L2276→ fby → r10ms107).

The maximal latency of the chain is simply one period, plus
one period for each fby in the chain, that is 20ms in total.

C. Effect Chain 2

EffectChain_2 = (r100ms7
L4258→ r10ms19

L2157→ r2ms8).
This chain involves nodes executing at different rates, it is
a multi-periodic chain, which contains a slow-to-fast rate
transition. We consider that the slow-to-fast rate transitions
follow the LET semantics. At each rate transition, we insert a
delay (for the LET semantics) and rate transition operators:
• From r100ms7 to r10ms19 : L4258 is delayed by one

period of 100ms, and over-sampled by a factor of 10;
the period of the resulting data-flow is 10ms.

• From r10ms19 to r2ms8: L2157 is delayed by one period
of 10ms, and over-sampled by a factor of 5.

The PRELUDE implementation of EffectChain_2 is:
r100ms7

L4258→ fby ∗ˆ10 → r10ms19
L2157→ fby ∗ˆ5 →

r2ms8.
The PRELUDE end-to-end analysis method [8] begins by

computing which occurrences of the first and the last runnable
of the chain are related by data-dependencies. Here, because
of the LET semantics, the dependencies are the following:
• The earliest occurrence of r2ms8 which is impacted by
r100ms71 is r2ms856;

• More generally, the earliest occurrence of r2ms8 which
is impacted by r100ms7i is r2ms856+50∗(i−1)

The latency of the chain is a constant value 112ms, i.e., the
latest possible end date of r2ms856 minus the earliest possible
start date of r100ms71. Notice how this latency is computed
without taking into account the actual scheduling. Only the
semantics of the program is considered.

D. Effect Chain 3

EffectChain_3 = (r700us800us3
L4576→ r2ms3

L646→
r50ms36). The first runnable of EffectChain_3 is sporadic.
PRELUDE has no dedicated support for sporadic nodes so we
implement the sporadic runnables as periodic nodes. To ensure
deterministic execution, the translator chooses the minimal
inter arrival time. For the worst case latency however, we need
to consider the maximal inter arrival time. So for instance, in
the case of EffectChain_3, r700us800us3 is implemented as
a periodic node of period 800us.

Rate transitions are handled as follows:
• From r700us800us3 to r2ms3 : L4576 is under-sampled

by a factor of 5 and afterwards over-sampled by 2; the
period of the resulting data-flow is 2ms;

• From r2ms3 to r50ms36: L646 is under-sampled by a
factor of 25; the resulting period is 50ms.

The PRELUDE implementation of EffectChain_3 is:
r700us800us3

L4576→ fby / ˆ 5 ∗ˆ 2 → r2ms3
L646→

fby /ˆ25→ r50ms36.
The dependencies along the chain are the following:
• r700us800us3i with i = 1 . . . 60 impact r50ms362;
• r700us800us3i with i = 61 . . . 120 impact r50ms363;
• r700us800us3i with i = 121 . . . 185 impact r50ms364.

The maximal latency is 103.3, it is achieved for
r700us800us3122, which starts at 96.8ms and which
impacts r50ms364, which itself ends at the latest at 200ms.

We did an experiment to measure the impact of the LET
semantics on the latency. For fast-to-slow rate transitions, we
considered an IMPLICIT communication (instead of the LET
semantics). The PRELUDE implementation of EffectChain_3

is then (r700us800us3
L4576→ / ˆ 5 ∗ˆ 2 → r2ms3

L646→
/ ˆ 25 → r50ms36). The maximal latency is achieved for
r700us800us362, which starts at 48.8ms and which impacts
r50ms363 ending at most at 150ms. The resulting latency is
150− 48.8 = 101.2ms. The LET implementation is only 2ms
greater than the IMPLICIT implantation.

Effect chains EC1 EC2 EC3

Max latency 20ms 112ms 103.2ms

IV. IMPLEMENTATION OF THE COMMUNICATIONS

We answer in this section to the challenge issues 1 and
2, that is how to implement efficient LET communication and
provide an assessment of the overhead in terms of extra cycles
and memory.

A. Buffers (or Labels) allocation

a) Current implementation in PRELUDE: Communica-
tions in the C code generated by the Prelude compiler rely on
buffering mechanisms, similar to the protocol by Sofronis et
al [9]. The size of the buffers, and the read and write positions
inside the buffers for each node execution are determined by
the compiler in a way that ensures data consistency. These
communication mechanisms also prevent race conditions and
priority inversions like the Logical Execution Time model.

The language allows some flexibility in the implementation
of the buffer associated to each label and of the read and
write operations. Such an implementation is considered correct
provided that: 1) it respects causality, meaning that the writer
completes before the reader begins (except for fby communi-
cations); 2) tasks respect their deadlines. The implementation
choice has an impact on WCET and performances, since it
impacts the memory access contentions, especially for multi-
core targets. In the past, we proposed a shared variable based
approach [10], and a distributed approach on the many-core
Intel Single-chip Cloud Computer (SCC) [11], which has been
introduced directly in preludec 1.6.0.

More recently, we have specialized this generic distributed
approach for the AER model [12] on an ARM-based multi-
core very similar to the one of the challenge. This compilation
scheme based on AER for synchronous programs has been
integrated in the WCC compiler [13] for WCET purpose. The
code associated to any runnable is split into three C functions:
• phase A: data consumed by an imported node is first

read during an acquisition phase A, i.e. copied from the
memory where it is stored to a local variable;

• phase E: the imported node executes in isolation from
other cores and without accessing any shared resources;

• phase R: data consumed by other imported nodes is
written in the LRAM during this phase.

The phases are then scheduled according to a non-preemptive
schedule computed off-line. The model assumes that when a
flow is produced by an imported node and consumed with a
direct communication, phase R of the producer must execute
before phase A of the consumer.

b) (Manual) Adaptation for the challenge: The AER
implementation together with the PRELUDE communication
protocol fits the challenge semantics. However, it is not
optimal in terms of memory size and memory contentions.
We propose an AER adaptation that reduces these overheads.
First, we split the phase A into two sub-phases:
• A let: labels from other tasks are copied at task activa-

tion;
• A implicit: labels from other runnables of the same task

are copied at the beginning of a runnable execution.

Code 2 (C wrapped code):

e x t er n i n t Label 744 , Label 586 , Label 1394 ,
Label 1779 ;

e x t er n i n t Label 2492 , Label 3543 , Label 4704 ,
Label 9944 ;

s t a t i c i n t l r Labe l 744 r5ms0 , l r Labe l 586 r5ms0 ,
l r Labe l 1394 r5ms0 , l r L ab e l 1 77 9 r 5m s0 ;

s t a t i c i n t lw Label 2492 ,
lw Label 3543 , lw Label 4704 , lw Label 9944 ;

void r 5 m s 0 a l e t ()
{

r e a d i n t (& l r Labe l 744 r5ms0 , Labe l 744) ;
r e a d i n t (& l r Labe l 586 r5ms0 , Labe l 586) ;
r e a d i n t (& l r Labe l 1779 r5ms0 , Label 1779) ;

}

void r 5 m s 0 a i m p l i c i t ()
{

r e a d i n t (& l r Labe l 1394 r5ms0 , lw Label 1394) ;
}

void r5ms0 e ()
{

v z f i l t e r s t e p (l r Labe l 744 r5ms0 , l r Labe l 586 r5ms0 ,
l r Labe l 1394 r5ms0 , l r Labe l 1779 r5ms0 ,
&lw Label 2492 , &lw Label 3543 ,
&lw Label 4704 ,& lw Label 9944) ;

}
void r5ms0 r ()
{

w r i t e i n t (& Label 2492 , lw Label 2492) ;
w r i t e i n t (& Label 3543 , lw Label 3543) ;
w r i t e i n t (& Label 4704 , lw Label 4704) ;
w r i t e i n t (& Label 9944 , lw Label 9944) ;

}

Let us illustrate the wrapping of Runnable 5ms 0 shown
in figure 2. The runnable comes with 4 functions, namely
r5ms0 X with X ∈ {a let, a implicit, e, r}. In the A let phase,
each consumed label Label l is copied in a local variable
named lr Label l r5ms0. In the R phase, each produced label
Label l is copied from a local variable named lw Label l. In
the A implicit phase, each consumed label Label l is obtained
simply by copying the variable lw Label l, allocated as a
static variable on the local core, in a local variable named as
lr Label l r5ms0. During the E phase, only local variables are
used (lr, lw). We define the following implementation rules:

• spatial rule: for each core c, for each Label l,
– For each consumer runnable rX executing on c, there

is a local copy lr Label l rX;
– If Label l is mapped on c and produced by runnable
r, there is local copy lw Label l managed by r;

• temporal rule:
– At the activation of a task t, all rX a let are called

in sequence for all runnables rX belonging to t;
– At the start of a runnable r, r a implicit is first

called;
– At the termination of a task, all rX r are called in

sequence.

B. Cost and optimization
In this section, we discuss the communication overheads.

First, in terms of memory, the total allocated memory is:∑
l∈[1,10000]

(nb consumers(Label l) + producer(Label l))× size(Label l)

where nb consumers(Label l) is the number of runnables
consuming Label l and producer(Label l) is equal to 0 if
Label l is an external input and 1 otherwise.

We can optimize the memory allocation according to the
following rules:
• on each core c, for each label Label l, for each task t

consuming Label l and not producing it, there is a single
local copy of lr Label l t;

• For each task t, for each label Label l produced in t, all
consumer runnable will directly use lw Label l.

Then the required memory will only be:∑
l∈[1,10000]

(nb task consumers(Label l) + 1)× size(Label l)

where nb task consumers(Label l) is the number of tasks
consuming Label l.

Now, we consider the memory contentions. Let n÷k denote
that the rest of the division of n by k is 0. We propose the
following scheduling strategy to reduce contentions:
• Pre-compute off-line the set of activation dates p over the

hyper-period H = lcm(period(t)). More precisely,

{p ≤ H|∃t, p÷ period(t)}

• Create for each core c the new tasks c let p and c r p
with the highest priority;

– For all runnable r executing on c such that p ÷
period(r), c let p calls in sequence all its a let
functions;

– At the termination p− ε, c r p calls in sequence the
r phases of terminating runnables.

• At each date p, we first execute the phases c0 let p on
core 0, then on core 1, then on core 2, then on core
3. Since access to distant memory is done in isolation,
we can compute the latency of a read. Thus the code
for core i would be: wait(d0,p + . . .+ di−1,p); c0 let p;
wait(di+1,p + . . .+ d3,p).

Thanks to this mechanism, the phases E and R will be fully in
isolation. Another approach would be to compute the maximal
conflicts encountered by each piece of code.

V. CONCLUSION

In this paper, we presented the main principles of a transla-
tion from AMALTHEA to PRELUDE and discussed alternative
communication implementations for the challenge. We also
presented the C code generation from PRELUDE. Using the
translator in combination with the preludec compiler actually
provides an AMALTHEA to C compilation chain. It took us
2 days to understand the challenge, 4 days to implement the
translator from AMALTHEA to PRELUDE, .5 days to analyze
latencies and 1 day to design the adaptations and optimizations
presented at the end of the paper. An URL for downloading
the translator will be posted on the WATERS forum by the
end of the submission week.

REFERENCES

[1] AMALTHEA, “An open platform project for embedded multicore sys-
tems,” available: http://www.amalthea-project.org.

[2] A. Hamann, D. Ziegenbein, S. Kramer, and M. Lukasiewycz, “Demo
abstract: Demonstration of the fmtv 2016 timing verification challenge,”
in 2016 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2016, pp. 1–1.

[3] A. Hamann, D. Dasari, S. Kramer, M. Pressler, F. Wurst, and D. Ziegen-
bein, “Waters industrial challenge 2017,” 2017.

[4] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: a time-
triggered language for embedded programming,” Proceedings of the
IEEE, vol. 91, no. 1, pp. 84–99, 2003.

[5] E. Farcas, C. Farcas, W. Pree, and J. Templ, “Real-time component
integration based on transparent distribution,” ACM SIGSOFT Software
Engineering Notes, vol. 30, no. 4, pp. 1–7, 2005.

[6] J. Forget, F. Boniol, D. Lesens, and C. Pagetti, “A multi-periodic
synchronous data-flow language,” in Proceedings of the 11th IEEE High
Assurance Systems Engineering Symposium (HASE’08), 2008.

[7] C. Pagetti, J. Forget, F. Boniol, M. Cordovilla, and D. Lesens, “Multi-
task implementation of multi-periodic synchronous programs,” Discrete
Event Dynamic Systems, vol. 21, no. 3, pp. 307–338, 2011.

[8] R. Wyss, F. Boniol, C. Pagetti, and J. Forget, “End-to-end latency
computation in a multi-periodic design,” in 28th Symposium On Applied
Computing (SAC’13), Coimbra, Portugal, Apr. 2013.

[9] C. Sofronis, S. Tripakis, and P. Caspi, “A memory-optimal buffering
protocol for preservation of synchronous semantics under preemptive
scheduling,” in EMSOFT ’06: Proceedings of the 6th ACM & IEEE
International conference on Embedded software, 2006, pp. 21–33.

[10] J. Forget, F. Boniol, D. Lesens, and C. Pagetti, “A real-time architecture
design language for multi-rate embedded control systems,” in Proceed-
ings of the 25th ACM Symposium on Applied Computing (SAC’10).
ACM, 2010, pp. 527–534.

[11] W. Puffitsch, E. Noulard, and C. Pagetti, “Mapping a multi-rate syn-
chronous language to a many-core processor,” in Proceedings of the
19th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS’13), 2013, pp. 293–302.

[12] G. Durrieu, M. Faugère, S. Girbal, D. Gracia Pérez, C. Pagetti, and
W. Puffitsch, “Predictable flight management system implementation
on a multicore processor,” in Proceedings of the 7th Conference on
Embedded Real Time Software and Systems (ERTS’14), 2014.

[13] C. Pagetti, H. Falk, D. Oehlert, and A. Luppold, “Space and time aware
compilation of synchronous programs,” in Under submission, 2017.

http://www.amalthea-project.org

	Problem description
	Software model
	Platform model
	Execution model

	Prelude implementation
	Restrictions compared to the original specification
	Structure of the Prelude challenge implementation
	Automatic translation of Amalthea specification in Prelude program

	Latency computation
	Effect chains and end-to-end latencies
	Effect Chain 1
	Effect Chain 2
	Effect Chain 3

	Implementation of the communications
	Buffers (or Labels) allocation
	Cost and optimization

	Conclusion
	References

