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1. Introduction 

Automotive E/E architectures are currently undergoing a radical shift in the way they are designed, 

implemented and deployed. Especially, the computational power and communication bandwidth 

required for new functionalities, such as automated driving or connected vehicle functions (e.g. path 

planning, object recognition, predictive cruise control), exceed the capabilities of current compute 

nodes (mainly micro-controller SoCs) and is leading to a reorganization of automotive systems 

following the paradigm of so-called centralized E/E architectures that are based on a new class of 

computing nodes featuring more powerful micro-processors and accelerators such as GPUs. 

One consequence of these centralized E/E architectures is that heterogeneous applications will be co-

existing on the same HW platform, heterogeneous not only in their model of computation (ranging 

from classical periodic control over event-based planning to stream-based perception applications) but 

also in their criticality, in terms of real-time and safety requirements. Ultimately, the burden of 

integration is shifted from the network to the ECU level and in this regard typically from the vehicle 

manufacturer to the supplier of the control unit.  

In order to cope with design and integration challenge, expressive performance models capturing the 

heterogeneity of the hardware-software system are needed. The WATERS industrial challenge 

addresses one example in this context, where the processing power offered by GPUs and their 

capability to execute parallel workloads is exploited to execute and accelerate applications related to 

advanced driver assistance systems.   

Thereby, we start with relatively simple models that are from our point-of-view, on the one hand, 

sufficient to derive sensible performance predictions for the presented use-case, and that are, on the 

other hand, not too far away from established models used in the real-time community, or in other 

words, there is a chance for existing models to be extended for addressing this challenge. 

This document contains the following information:  
● A primer on NVIDIA TX2 platform with focus on CPU – GPU interactions, scheduling, memory 

model, and offloading mechanisms as basis for performance modeling in Amalthea 
● A brief description of the challenge questions 
● A description of the considered application (a concrete Amalthea performance model will be 

provide to a later point in time) 
● A description of utilized Amalthea performance modeling approaches suitable to description 

the software and hardware parts including their interaction for the given challenge. 
 
This description is a very good start for groups that want to work on the WATERS Industrial Challenge 
2019. However, we expect that many additional questions will arise in the next months. Please use the 
WATERS community forum to ask those additional questions. We will monitor the forum and answer 
your questions in a timely fashion.  
 
  

https://www.ecrts.org/forum/viewforum.php?f=4&sid=eb79070e82097241607e9f2d9fc11758


2. NVIDIA TX2 Platform 

2.1. Heterogeneous architecture overview 
At a high-level abstraction, embedded heterogeneous SoCs (System of Chip) featuring GP-GPU 

accelerators are characterized by the following hardware components: 1) CPU 2) Accelerator and 3) 

Memory hierarchy as seen Figure 1. 

 

Figure 1: Multi-heterogeneous hardware platform 

Host subsystem. As shown in Figure 2, the Jetson TX2 is composed of two different CPU islands, a 

quad-core 1.9GHz ARMv8 A57 and a dual-core 2GHz ARMv8 Denver (NVIDIA ARM-based proprietary 

technology). Each of the cores in the A57 subsystem integrates a private 32KB L1 data cache and a 

48KB L1 instruction cache, while the Denver feature per-core 32KB L1 data cache and 48KB L1 

instruction cache. Moreover, each of the islands has a 2MB L2 cache. 

 

Figure 2: Jetson TX2 hardware architecture 

Accelerator. The platform integrates a iGPU (integrated GPU1) Pascal-based architecture “gp10b” with 

256 CUDA cores grouped within two streaming multiprocessor (SM), each of the SM in the SoC have a 

64KB L1 cache, and both SMs share a 512KB L2 cache. The GPU integrates two major hardware 

                                                           
1 since the TX2 has only one iGPU from now on we will call it GPU 



components that are the responsible of the different GPU functions, namely an Execution Engine (EE) 

that is responsible for performing the parallel workload execution and a Copy Engine (CE) that is 

responsible of high bandwidth memory transfers. 

Memory. In embedded devices, for example NVIDIA Tegra based boards, the GPU and the CPU have 

access to a common shared memory.  Allocations in global memory are managed by the CPU host. The 

GPU is organized as an array of Streaming Multiprocessors (SM) where the SMs share a common L2 

cache. GP10b has 2 SMs. With regard to memory, there are two points to consider: 

● Memory bandwidth. The Tegra X2 SoC features 8GB LPDDR4 128 bit DRAM with a bandwidth 

of ~58 GB/s.  The Denver cores have approximately three times the memory bandwidth of the 

ARM-A57 cores, i.e. approximately 14 vs 4.5 GB/s, hence memory accesses from the Denver 

cores have shorter latencies for a single read operation throughout L2 and system RAM 

accesses. The GPU can access the shared RAM banks2 with a bandwidth of 20GB/s. 

● Memory allocations. Memory can be allocated in a pageable & pinned (or page-locked 

memory) fashion. Accordingly, different programming strategies can be used when 

transferring data from host to device and vice-versa. In this regard, NVIDIA encourages the use 

of pinned memory (as opposed to pageable) to improve the bandwidth of data transfers3 and 

support predictability. 

2.2. Kernels, Custom Streams and Default Streams 
A GPU function, also called command or kernel, refers to a C++ function that is executed on the GPU. 
An application may be realized with one or more GPU kernels in addition to regular CPU functions. A 
stream is a queue of both compute and copy operations issued by an application. An application can 
have multiple streams and typically kernels that can run in parallel are assigned to different streams. 
Kernels within a stream are executed in FIFO order whereas kernels from two different (custom) 
streams of the same application can execute concurrently subject to the availability of enough 
resources on the GPU. Potentially, a kernel on a stream can utilize all the CUDA cores of all the SMs of 
the GPU. CUDA allows to designate a stream to have either a high priority or a lower priority.   
 
Streams can be categorized as DEFAULT streams or custom streams. When unspecified, all kernels are 
executed by default in the DEFAULT stream. The default stream is different from other streams 
because it is a synchronizing stream with respect to kernels on the device: no kernels in the default 
stream will begin until all previously issued kernels in any stream on the device have completed, and a 
kernel in the default stream must complete before any other kernel (in any stream on the device) will 
begin. Custom streams on the other hand can exploit parallelism, can exploit priorities and can clearly 
specify synchronous or asynchronous execution semantics. We only assume custom streams in our 
challenge model.  

2.3. GPU Scheduling Model 
In our model, a GPU-based application is a process that creates a so-called GPU-context4. For instance, 

two GPU applications identify 2 GPU contexts, which live in different memory spaces, following a 

standard UNIX-like process execution scheme. 

Each application is associated with one (or more) channels. Only a channel associated with one 
application can execute on the GPU at any given time. So, two applications cannot co-execute at the 
same time, they may however have interleaved executions. The channels are enqueued in a run-list as 
seen in Figure 3. The GPU scheduler (implemented in hardware), also called the GPU Host, iterates 

                                                           
2 http://algo.ing.unimo.it/people/marko/papers/ETFA17.pdf 
3 https://devblogs.nvidia.com/how-optimize-data-transfers-cuda-cc/ 
4 GPU contexts for graphic workloads are typically written using OpenGL framework, while general 
purpose workloads are in C++/CUDA. We focus on the latter. 



over the run-list selecting one channel at a time in a weighted round-robin manner. The time for which 
a channel executes is configurable; if the kernels of a channel complete before its allocated time-slice, 
the channel is switched out and a new channel is scheduled (work conserving).  The number of times 
that a channel appears on the run-list and whether it can be preempted is also configurable.  
 
 

 
Figure 3: Channel scheduling in a run-list 

The timeslice within a channel could be used to execute the copy or the execution phases. When the 
channel has multiple streams, the copy and execute phases may run in parallel as seen in Figure 4, 
depending on availability of resources. Please note that in our challenge model, we assume only one 
stream per application. 
 

 
Figure 4: Parallelism with multiple streams 

 
Once a channel is selected, the GPU scheduler dispatches kernels of the selected channel for execution 
to the SMs (or copy phases to the copy engine). Then, within each SM, its hardware warp scheduler 
further assigns these commands to execute on different warps (A warp is a group of 32 physical 
threads, all of which execute in SIMD mode). 
 

2.4. GPU-CPU interaction  
A program running on a GPU works in the following way; when a program starts, the CPU copies the 

data and instructions from host memory domain to GPU memory, this copy is performed using the 

Copy Engine (CE) as seen in Figure 5. After this operation, the CPU launches one or more kernels: this 

execution can be either Synchronous or Asynchronous. If synchronous, the CPU dispatches the work to 

the GPU and then the CPU waits until the end of the kernel execution. In the asynchronous case, it is 

possible to perform computations on the CPU, immediately after dispatching the work to the GPU 

without waiting for completion, in a work-conserving manner.   



 

Figure 5: Data transfer handled by the copy engine 

 

2.5. Assumptions 
For the WATERS Industrial Challenge 2019 we assume the following: 

 CPU tasks follow the read, execute and write semantics 

 A CPU task offloads workload synchronously or asynchronously to the GPU 

 GPU: We assume that applications do not use unified/paged memory but only pinned 

memory 

 GPU: We consider that each application has one custom stream associated with it 

 GPU: We assume that there is a single copy engine to carryout host-to-device and device-

to-host memory transfers     

 GPU: We assume a channel per context (application), so as to have one time slice per 

application. Different applications might have different time slices.  

 GPU: We assume no fine granular modeling of memory accesses from the execution 

engine. Memory accesses from the EE stage are not explicitly modeled (memory accesses 

are included in ticks, because copy engine also make use of Level 2 Cache). An extension 

is later possible  

 For the CPU, priorities have to be set so as to meet deadlines. We assume that the task 

period is equal to its deadline.  

 For simplicity, we assume that cache lines are not evicted and tasks access labels only once 

per activation, from memory. The participants could however override this assumption, 

but clearly state it out in their solution.  

 Although caches are not explicitly modelled, we assume that data is always transferred as 

a complete cache line (64 Bytes). 

 

3. The Challenge  
The challenge consists in analytically master the complex HW/SW system (that will be available as 

Amalthea model) to answer the following questions: 

1. Response Time Computation: Given an application consisting of a set of dependent tasks and 

a given mapping, calculate its end-to-end response time  

○ The response time should account for the time for the copy engine to transfer data 

between the CPU and the GPU. 

○ The response time should account for the time for the data transfers between the CPU 

and the shared main memory considering a read/execute/write semantic. 

○ Optionally the offloading mechanism (synchronous/asynchronous) can be changed to 

further optimize the end-to-end latencies 



○ Devise a model to account for memory interference when multiple CPU cores and the 

GPU CE is accessing memory at the same time. The response time analyses should 

therefore be memory contention aware. An example of a memory interference model 

will be detailed later in this document. 

2. Mapping Challenge: Some tasks can either be mapped to different type of CPUs (A57 or Denver 

Cores) or a GPU, defining a design space for exploration. Find mappings that (Pareto-) optimize 

the latency of the different task chains. 

Note:  

1. We have provided a default mapping in the Amalthea model. However this mapping is not 

feasible and must be changed.  

2. When tasks are mapped to the GPU, the relevant time-slice parameters for each task must be 

provided. The current time-slice parameters are only placeholders and can be changed.   

4. Application Use Case   
Researchers in next-generation embedded systems agree that there is a clear need and urgency to 

demonstrate and bound the predictability of complex heterogeneous systems in terms of end-to-end 

latencies. In this section we present an overview of the application proposed for the WATERS 

Industrial challenge 2019. 

We developed the prototype of an end-to-end autonomous driving application running on the Tegra 

TX2 platform5, representative of next-generation AD/ADAS systems, because it uses state of the art 

algorithms in robotics/automotive, mixes different workloads with different criticality levels on the 

same computing platform, and exploits architectural heterogeneity by concurrently running tasks in 

the most suitable computational units (i.e., CPU and GPU).  

 

The reference application provides the proper throttle, steering and brake signals to drive a vehicle 

through a predetermined map of waypoints. Moreover, the vehicle runs specific high-priority tasks to 

break and/or perform emergency maneuvers to avoid obstacles like pedestrians or bicycles, the so-

called Vulnerable Road Users (VRUs). It is important to mention that the application works without 

using ROS6, and all the algorithms are implemented from scratch. 

 

We now show a brief description of the key software tasks running in the system. The green boxes 

represent the workloads executing on the GPU, while the blue ones execute on the CPU hosts. It is 

important to note that there are tasks that can be partitioned by using either a GPU or CPU 

implementation of it, e.g., lane detection or localization. 

 

                                                           
5The TX2 processor is at the base of the NVIDIA Drive board series, the state-of-the-art of high-
performance embedded platform for autonomous driving and ADAS systems. 
6http://www.ros.org/ 

https://www.nvidia.com/en-us/self-driving-cars/drive-platform/


 

Figure 6: Application tasks 

 

Specifically, the tasks are: 

● LIDAR Grabber. It reads the information from the LiDAR sensor, and builds a point cloud that 

is shared with the Localization task. This task also produces a so-called occupancy grid that 

captures the free space in front of the vehicle. This information is sent to the Path Planner 

task.  

● Localization (CPU/GPU). We implemented a Particle Filter localization algorithm; this method 

adopts a probabilistic model to determine the position of the car on the given environmental 

map. This position information is then merged with the motion estimation coming from the 

vehicle odometry, to obtain an accurate and predictive estimate of the vehicle's position. The 

current pose of the vehicle is sent to the EKF task.  

● CANbus polling. This task snoops the key vehicle information 

(steer/wheel/break/acceleration status…) from the on-board CAN bus and sends it to the 

Localization, Planner and EKF tasks.   

● Path Planner. The main purpose of this component is to define and follow a given trajectory. 

This trajectory is defined as a spline, that is, a line built through polynomial interpolation at 

times on the map that represents at each point the position and orientation that the car will 

have to follow. The spline can be enriched with additional information such as speed to hold, 

stop, priorities, etc. The planner sends the goal state of the vehicle (i.e., target steer and speed) 

to the DASM task that is in charge of writing the commands in the CAN line the effective steer 

and speed to apply. 

● DASM (Control+CAN writing). This task computes and establishes the speed and steer that 

must be effectively employed from the information that is provided by the Path Planner task. 

In order to implement this node, we used two different controllers: 

○ A Pure Pursuit controller calculates the steering angle to follow the given trajectory. 

The operating principle is based on a target point placed on the trajectory to be 

followed at a distance that varies from the vehicle depending on the speed, the angle 

between the vehicle and the target determines the steering angle of the vehicle. 

○ Then, we use a PID controller to follow the speed profile defined on the trajectory to 

be followed. 

Finally, the commands are sent via CAN bus to the engine control unit in order to perform the 

final actuation.  

● EKF. The Extended Kalman Filter is the nonlinear version of the Kalman filter method. This 

algorithm estimates the poses of the ego vehicle and objects repeating two stages: prediction 

and correction. The data produced is a matrix that corresponds to the object and ego vehicle 

estimation and it is sent to the Path Planner. 



● Lane detection (CPU/GPU). This task identifies the lane boundaries of the road, by doing so it 

is possible to provide an accurate location of the road boundaries and the shape of each lane. 

The output of this task is a matrix of points that represent the lane boundaries within the road. 

● Detection (GPU). This task is responsible of detecting and classifying the objects in the road. It 

uses a machine learning approach, with an optimized version of YOLOV27,8 for the TX2 platform 

that exploits CUDNN and TENSORRT. In this context, we re-trained the neural network in order 

to extend the classification classes of the baseline neural network, in this way, we support the 

following categories: Pedestrians, Cars, Trucks, Bus, Motorbikes, Bicycles, Riders, Traffic lights, 

Traffic signs. All the objects detected are visualized and the information produced is sent to 

the Planner task. 

● Structure-From-Motion (SFM) (CPU/GPU). Structure-From-Motion is a method for estimating 

3-D structures (depth) from vehicle motion and sequences of 2-D images. This task returns a 

matrix of points representing the distance with respect the objects of the image. 

 

Please note that each node of the task graph shown in figure 6 is modelled as Liu and Layland tasks 

(please feel free to enrich this task model). This implies that each node is characterized by period, 

execution needs and a deadline. The dependencies between tasks are “soft”: this means that each 

task is independently activated once per period and once it finishes its execution, it places the output 

data into a buffer in such a way that the following task can extract from this intermediate buffer the 

most recent data produced and work on it.  

The only exception to this is represented by the pre and post processing phases of GPU tasks as 

described in section 5.2 and 5.3 which have a strict execution order.  

Please note that not every detail is completely specified: feel free to ask for more details in the forum 

or to integrate what do you think is missing with reasonable and motivated assumptions. 

5. Model Description in Amalthea 
For describing the system model, we use the Amalthea meta-model version 0.9.3. Amalthea is 

organized within different sub models like software, hardware, mapping, stimuli, etc.  

A complete documentation about the Amalthea version can be found on the official Amalthea Eclipse 

webpage9,10. In the following subsections, different modeling concepts are explained that are used for 

describing the challenge introduced earlier. 

5.1. CPU memory access semantics  
We assume that tasks executing on the CPU follow a read/execute/write semantic. In this model, the 

execution is decoupled into three different phases: a read phase where the data is fetched from 

memory, an execution phase, where the task performs pure computation and a write phase, when the 

core writes the computed result back to memory. 

Memory accesses are usually represented as label accesses in Amalthea (within a runnable). The size 

of the label as well as the operation itself (read or write), is specified in the software model. The 

mapping to memory is specified in the mapping model, while the access latencies/data rates and 

access path can be specified in the hardware model. Figure 7 shows an example in the challenge model 

                                                           
7 You only look once (YOLO) is a state-of-the-art open-source, real-time object detection system. 
8 tkDNN: https://github.com/ceccocats/tkDNN 
9 https://www.eclipse.org/app4mc/documentation/ 
10 The User Guide contains a timing primer on Amalthea (Concepts → Timing in Amalthea) 

https://www.eclipse.org/app4mc/documentation/


for a Runnable within a Task following the read (label access to l1) → execute (Ticks) → write (label 

access to offload1) policy.  

 

Figure 7: Runnable example for a CPU 

 

Then the total execution time of a task is the sum of the  

 Label Read access time  

 Core execution time = Ticks / Frequency of the processing unit (CPU /GPU) 

 Label Write access time 

The label read and write access time is a function of the label size, read/write latency and the frequency 

of the processing unit. Then 

 Read access time = (Label size /Cache line size) *  (read latency / Frequency of the processing 

unit) 

And likewise for the write access time. Note that due to simplicity, read and write latencies are always 

the same (we ignore store buffers, etc).  

The read and write latencies are specified for every processing unit. In the model it can be founder 

under Processing Unit -> Access Element.  

 

5.2. GPU Modeling 
A GPU can be represented by a processing unit within the Amalthea hardware model. Due to the 

assumption that every application consists of one stream, it is not necessary to separate the copy 

engine from the execution engine as this essentially implies that interleaving between copy and 

execution phases cannot occur. For the abstract modeling of a GPU, we do not model the internal 

architecture like thread blocks, or the internal memory hierarchy explicitly. Due to its complexity, we 

also abstract the GPU cache system, this means that the explicit copy operations are executed (see 

Section 5.3) but all data accesses during the execution on the graphics/compute engine are already 

accounted in the “ticks” specified in the runnable.   

 
 

5.3. GPU Offloading 
In Amalthea parallelism is expressed on task level, this means all items (e.g. runnables) within a task 

are executed sequentially. Therefore, in case a workload is offloaded to the GPU, this workload is 

modelled as a separate task, which is shown in Figure 8. 

 



  

Figure 8: Modelling sync & async offloading with special copy tasks 

The offloading requires data to be transferred from the CPU memory region to the GPU memory region 

(explained in Section 2.4).  

This is accomplished by separating this offloading in three different runnables (1: host to device copy 

operation, 2: execution, 3: device to host copy operation). Figure 9 shows an example with three 

runnables and the task calling the runnables, like it is used in the provided model. 

 

 

Figure 9: GPU workload example 3 runnables 

In addition, the offloading can be performed in synchronous or asynchronous manner. Figure 8 shows 

the two different mechanisms.  

 

Figure 10: Synchronous offloading (left) and asynchronous offloading (right) 



The workload WL1CPU is executed on a CPU. WL1CPU contains label accesses or ticks (to specify the 

computational cost).  

● In the synchronous case, the CPU task offloads the work to the GPU, and then actively waits 

for the execution on the GPU to be completed, the resulting data is copied back from the GPU 

to the CPU and the corresponding event SetEvent11 is set by the GPU task (see Figure 10). 

In this case, the latency between the end of the GPU kernel and the start of the postprocessing 

phase is 0 (wait events are active). 

● In the asynchronous case, after the CPU task offloads the work to the GPU and goes into a 

passive waiting mode:  this implies that the scheduler can schedule other workloads on the 

CPU before the completion of the GPU workload, specified by the “Clear Event” event. 

However, the latency between of the end of the GPU kernel and the start of the postprocessing 

phase is equal to the execution time of the “AsyncOffloadingCosts” runnable (wait events are 

passive) as seen in Figure 10.  

Note that the “asyncOffloadingCosts” runnable is present in the model, but called by any task since we 

have only modelled the Synchronous Offloading case. However in case an Asynchronous Offloading 

has to be modelled, please insert this runnable as shown in Figure 10 and factor in the penalty in the 

overall response time. 

The concrete modeling is shown in Figure 10. The offloading is triggered with the GPU_offloading inter 

process trigger within the task mapped to a CPU. This trigger activates a task which is mapped to a GPU 

and contains WL1GPU. On the left side of the figure, the synchronous case is modeled by directly 

entering the WaitEvent. On the right side, in the asynchronous case, another workload (WL2_CPU) is 

executed before the WaitEvent is entered. The event itself is set in the task mapped to the GPU after 

finishing WL1GPU (see SetEvent in Figure 9). In both scenarios, the ClearEvent resets the synchronization 

barrier.   

5.4. GPU Scheduling 
For the GPU Scheduling, we assume one combined scheduler for the GPU (instead of having a 

separate scheduler for the copy engine and the execution engine), this is possible due to the 

assumption that every application has just one stream (currently represented with one task executed 

on the GPU). Therefore, given an application, the time slice allocated to its channel is used for both 

copying and execution.  

We do not explicitly model channels in Amalthea but associate one GPU task to each application. These 

tasks are scheduled by the custom time slice scheduler of the GPU with minimum and maximum time 

slice of 1 ms and 500 ms respectively. These attributes are set in the Amalthea model under Operating 

System -> GPU_Cluster -> GPU_Sched ->User Specific Scheduling Algorithm. The scheduling policy is 

explained in Section 2.3.  

The aforementioned weighted round robin scheduler policy is not directly supported in Amalthea, 

therefore a custom scheduler is used. The individual time slices for the different tasks can be specified 

in the mapping model when mapping a task to a scheduler “TaskAllocation”. An example is shown in 

Figure 11.                  

                                                           
11 Please note that in the Amalthea model the mechanisms wait, set, and clear event originated from 
OSEK concepts, and are thus currently called OSEvents. In future Amalthea releases this concept will 
be generalized. 



 

Figure 11: Specifying individual time slices for tasks 

 

5.5. Mapping dependent resource consumption  
One of the challenges is to optimize end-to-end latencies by changing the task mapping of the given 

model. Figure 12 shows an Amalthea modelling example, which includes multiple tick values for 

different mapping targets: e.g. workload WL3 requires a default of 6000 ticks when mapped to the 

Cortex A57, and 3000 ticks when mapped to the GPU.  Note this entries also implicitly define the 

possible mapping targets.  

 

Figure 12: Extended ticks in Amalthea 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Appendix 
 

1. Transformation from a GPU Task Mapping to a CPU Task Mapping 

 
Three tasks that can be mapped either to a GPU or a CPU this tasks are SFM, Localization, and 

Lane_detection. In the provided model all cores who can run on the GPU are mapped to the GPU 

because in this case additional information like pre and post processing are necessary. The offloading 

from a CPU to the GPU is explicitly modelled with an additional task. This means whenever a 

remapping is done for one of the three mentioned tasks (SFM, Localization and Lane detection) the 

model has to be changed.  

We provide a second model for just the three tasks in case they are mapped to a CPU instead of the 

GPU.   

Example with the SFM task for changing the mapping from GPU to CPU: 

 Task PRE_SFM_gpu_POST has to be removed (at least trigger hast to be removed) 

 

 Task trigger in the properties of the SFM task has to be changed from inter process trigger to 

the periodic trigger (periodic_33ms) former trigger of the PRE_SFM_gpu_POST task. 

 

 
 

 Mapping in the mapping model for the SFM task is changed to a specific CPU (also updating 

the priority based on the period) 

 

 Constraint Deadline_Task_SFM in the constraint model is changed for the 

PRE_SFM_gpu_POST task to the SFM task (value stays the same  33ms) 



 
 

 In the SFM task the runnable calls for SFM_host _to_device and SFM_device_to_host and the 

SetEvent element are removed (the runnables are not needed anymore) 

 
 

 In the runnable SFM_Function the label accesses are added like in the additional model we 

provided (CPU_Mapping_Changes.amxmi). 

For remapping a task from an A57 core to Denver core just the mapping in the mapping model have 

to be changed and another tick value and time for memory accesses have to be considered.  

 

2. Analytical Model of Memory Contention  

 2.1 Modelling Memory Contention  
As an addition to the challenge, we ask the participants to formulate a memory contention model 

when more than one CPU core and/or the GPU is accessing memory at the same time.  The proposed 

modelling should consider the following factors. 

 A task mapped to run on the GPU, needs offloading data that is acquired through the copy 

engine (GPU CE)  

 A GPU kernel outputs data that needs to be copied back to the host.  

 CPU tasks are modeled as with a Read/Compute/Write semantic, with "Read" and "Write" 

being 100% memory bounded operations 

 GPU CE, A57 and Denver have significantly different memory bandwidth, latencies and 

sensitivity to memory interference.  

 The size of buffers to be read and to written is known in advance and is fixed for every 

instance of the periodic task.  

We then need to derive the read/write latencies when more than one CPU core is accessing main 

memory at the same time. We present an example memory model below and the authors could 

build their analysis on this or present a refined contention model.  



2.2 Example Memory Model 
We consider the following work that measures memory impact on interference: 

 

https://ieeexplore.ieee.org/stamp/stamp ... er=8247615  

http://hercules2020.eu/wp-content/uploa ... tforms.pdf 

 

The idea is that the length of memory phases (read and write) depends on how many other memory 

controller clients are accessing main memory at the same time. The model accounts for increasing 

latencies for GPU CE activity during the observed time window. The method to compute memory 

contention for CPU and GPU tasks is presented as below.  

2.2.1 Modelling Memory Contention for CPU Tasks 
 

Lat(CPUtype,cacheLine)[ns] = baseline(CPUtype) + K(CPUtype)*#C + sGPU(CPUtype)*bGPU  

 

with: 

 Lat(x,y) = time needed to read or write a cacheLine (64B) from main memory to CPU registers. 

 CPUtype = Observed CPU core; A57 or Denver 

 baseline = time taken to read or write a cacheLine (64B) from main memory to CPU registers in 

isolation (no interference). 

baseline(A57) = 20 ns  

baseline(Denver) = 8 ns 

 K(CPUtype) = increase in latency operated by a single interfering core.  

o Do note: it does not matter if the interfering core is denver or A57: this number only 

depends on the observed CPU core (CPUtype) 

K(A57) = 20 ns 

K(Denver) = 2 ns  

 

 #C = number of interfering cores. Range from 0 to 5 (as one core is the observed CPU core. 0 

means no interference from other CPUs) 

o  sGPU = sensibility to GPU CE activity. This represents an increase in latencies if the GPU 

is performing operations on the copy engine. 

sGPU(A57) = 100 ns 

sGPU(Denver) = 20 ns 

  bGPU = boolean. 1: if the GPU is operating the copy engine, 0 otherwise. 

 

2.2.2  Modelling Memory Contention for GPU Tasks 
From the GPU side, we only consider interference from the Copy Engine data movements (modeled 

in Amalthea as "runnables"). A GPU CE data movement is a 100% memory bound runnable. Every 

memory access is modeled as sequential access.  

 

Lat(memcpy,64B) = GPUbaseline + 0.5*#C 

with   

 Lat(memcpy,64B) = Time taken to transfer 64B using the copy engine (cudaMemcpy) 

 GPUbaseline = 3 ns. Time taken to transfer 64B using the copy engine with no interfering CPUs .  

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8247615
http://hercules2020.eu/wp-content/uploads/2017/03/D2.2_Detailed_Characterization_of_Platforms.pdf


Each core active in the same time window of the CE operation increases the baseline by half a 

nanosecond. 

 

2.3  Numerical Example 
 

A task mapped on a A57 core has a memory footprint (read) of 128B. If no other CPU is accessing 

memory (#C=0) and if the GPU CE is idle (bGPU=0), then the time necessary to perform the read 

operation of the working set size is:   

 128/cacheLine*Lat(A57,cacheLine) = 2*20 = 40 ns . 

 

If one core is active (does not matter if Denver or A57): 

128/cacheLine*Lat(A57,cacheLine) = 2*(20 + 20*1 + 0) = 80 ns.  

And this would increase to 280 ns if the GPU CE was active for the whole time of this memory phase. 

 

   

 

  



 

List of Figures 
 

Figure 1: Multi-heterogeneous hardware platform 2 

Figure 2: Jetson TX2 hardware architecture 2 

Figure 3: Channel scheduling in a run-list 4 

Figure 4: Parallelism with multiple streams 4 

Figure 5: data transfer executed by the copy engine 5 

Figure 6: Application tasks 7 

Figure 7: Runnable example for a CPU 9 

Figure 8: Modelling snyc & async offloading with special copy tasks 10 

Figure 9: GPU workload example 1 runnable 10 

Figure 10: GPU workload example 3 runnables 11 

Figure 11: Synchronous offloading left and asynchronous offloading right 11 

Figure 12: Specifying individual time slices for tasks 12 

Figure 13: Extended ticks in Amalthea 12 

Figure 14: Transformation for GPU offloading 12 

 

 


