# WATERS Industrial Challenge 2019

Arne Hamann, Dakshina Dasari, and Falk Wurst, Corporate Research Robert Bosch GmbH

Ignacio Sañudo, Nicola Capodieci, Paolo Burgio and Marko Bertogna, University of Modena and Reggio Emilia

# 1. Introduction

Automotive E/E architectures are currently undergoing a radical shift in the way they are designed, implemented and deployed. Especially, the computational power and communication bandwidth required for new functionalities, such as automated driving or connected vehicle functions (e.g. path planning, object recognition, predictive cruise control), exceed the capabilities of current compute nodes (mainly micro-controller SoCs) and is leading to a reorganization of automotive systems following the paradigm of so-called centralized E/E architectures that are based on a new class of computing nodes featuring more powerful micro-processors and accelerators such as GPUs.

One consequence of these centralized E/E architectures is that heterogeneous applications will be co-existing on the same HW platform, heterogeneous not only in their model of computation (ranging from classical periodic control over event-based planning to stream-based perception applications) but also in their criticality, in terms of real-time and safety requirements. Ultimately, the burden of integration is shifted from the network to the ECU level and in this regard typically from the vehicle manufacturer to the supplier of the control unit.

In order to cope with design and integration challenge, expressive performance models capturing the heterogeneity of the hardware-software system are needed. The WATERS industrial challenge addresses one example in this context, where the processing power offered by GPUs and their capability to execute parallel workloads is exploited to execute and accelerate applications related to advanced driver assistance systems.

Thereby, we start with relatively simple models that are from our point-of-view, on the one hand, sufficient to derive sensible performance predictions for the presented use-case, and that are, on the other hand, not too far away from established models used in the real-time community, or in other words, there is a chance for existing models to be extended for addressing this challenge.

This document contains the following information:

- A primer on NVIDIA TX2 platform with focus on CPU GPU interactions, scheduling, memory model, and offloading mechanisms as basis for performance modeling in Amalthea
- A brief description of the challenge questions
- A description of the considered application (a concrete Amalthea performance model will be provide to a later point in time)
- A description of utilized Amalthea performance modeling approaches suitable to description the software and hardware parts including their interaction for the given challenge.

This description is a very good start for groups that want to work on the WATERS Industrial Challenge 2019. However, we expect that many additional questions will arise in the next months. Please use the <u>WATERS community forum</u> to ask those additional questions. We will monitor the forum and answer your questions in a timely fashion.

# 2. NVIDIA TX2 Platform

# 2.1. Heterogeneous architecture overview

At a high-level abstraction, embedded heterogeneous SoCs (System of Chip) featuring GP-GPU accelerators are characterized by the following hardware components: 1) CPU 2) Accelerator and 3) Memory hierarchy as seen Figure 1.

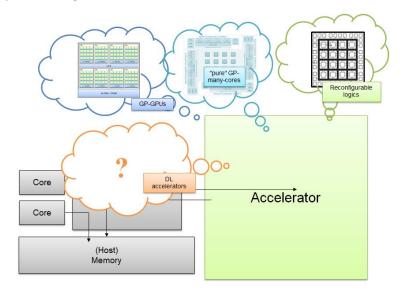


Figure 1: Multi-heterogeneous hardware platform

**Host subsystem.** As shown in Figure 2, the Jetson TX2 is composed of two different CPU islands, a quad-core 1.9GHz ARMv8 A57 and a dual-core 2GHz ARMv8 Denver (NVIDIA ARM-based proprietary technology). Each of the cores in the A57 subsystem integrates a private 32KB L1 data cache and a 48KB L1 instruction cache, while the Denver feature per-core 32KB L1 data cache and 48KB L1 instruction cache. Moreover, each of the islands has a 2MB L2 cache.

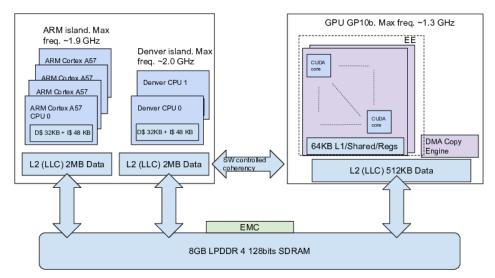


Figure 2: Jetson TX2 hardware architecture

**Accelerator.** The platform integrates a iGPU (integrated GPU<sup>1</sup>) Pascal-based architecture "gp10b" with 256 CUDA cores grouped within two streaming multiprocessor (SM), each of the SM in the SoC have a 64KB L1 cache, and both SMs share a 512KB L2 cache. The GPU integrates two major hardware components that are the responsible of the different GPU functions, namely an Execution

<sup>&</sup>lt;sup>1</sup> since the TX2 has only one iGPU from now on we will call it GPU

Engine (EE) that is responsible for performing the parallel workload execution and a Copy Engine (CE) that is responsible of high bandwidth memory transfers.

**Memory**. In embedded devices, for example NVIDIA Tegra based boards, the GPU and the CPU have access to a common shared memory. Allocations in global memory are managed by the CPU host. The GPU is organized as an array of Streaming Multiprocessors (SM) where the SMs share a common L2 cache. *GP10b has 2 SMs*. With regard to memory, there are two points to consider:

- Memory bandwidth. The Tegra X2 SoC features 8GB LPDDR4 128 bit DRAM with a bandwidth of ~58 GB/s. The Denver cores have approximately three times the memory bandwidth of the ARM-A57 cores, i.e. approximately 14 vs 4.5 GB/s, hence memory accesses from the Denver cores have shorter latencies for a single read operation throughout L2 and system RAM accesses. The GPU can access the shared RAM banks² with a bandwidth of 20GB/s.
- Memory allocations. Memory can be allocated in a pageable & pinned (or page-locked memory) fashion. Accordingly, different programming strategies can be used when transferring data from host to device and vice-versa. In this regard, NVIDIA encourages the use of pinned memory (as opposed to pageable) to improve the bandwidth of data transfers<sup>3</sup> and support predictability.

### 2.2. Kernels, Custom Streams and Default Streams

A GPU function, also called command or kernel, refers to a C++ function that is executed on the GPU. An application may be realized with one or more GPU kernels in addition to regular CPU functions. A stream is a queue of both compute and copy operations issued by an application. An application can have multiple streams and typically kernels that can run in parallel are assigned to different streams. Kernels within a stream are executed in FIFO order whereas kernels from two different (custom) streams of the same application can execute concurrently subject to the availability of enough resources on the GPU. Potentially, a kernel on a stream can utilize all the CUDA cores of all the SMs of the GPU. CUDA allows to designate a stream to have either a high priority or a lower priority.

Streams can be categorized as DEFAULT streams or custom streams. When unspecified, all kernels are executed by default in the DEFAULT stream. The default stream is different from other streams because it is a synchronizing stream with respect to kernels on the device: no kernels in the default stream will begin until all previously issued kernels in any stream on the device have completed, and a kernel in the default stream must complete before any other kernel (in any stream on the device) will begin. Custom streams on the other hand can exploit parallelism, can exploit priorities and can clearly specify synchronous or asynchronous execution semantics. We only assume custom streams in our challenge model.

#### 2.3. GPU Scheduling Model

In our model, a GPU-based application is a process that creates a so-called *GPU-context*<sup>4</sup>. For instance, two GPU applications identify 2 GPU contexts, which live in different memory spaces, following a standard UNIX-like process execution scheme.

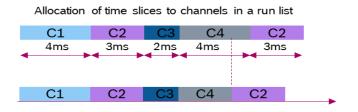
Each application is associated with one (or more) channels. Only a channel associated with one application can execute on the GPU at any given time. So, two applications cannot co-execute at the same time, they may however have interleaved executions. The channels are enqueued in a run-list as seen in Figure 3. The GPU scheduler (implemented in hardware), also called the GPU Host, iterates

<sup>&</sup>lt;sup>2</sup> http://algo.ing.unimo.it/people/marko/papers/ETFA17.pdf

<sup>&</sup>lt;sup>3</sup> https://devblogs.nvidia.com/how-optimize-data-transfers-cuda-cc/

<sup>&</sup>lt;sup>4</sup> GPU contexts for graphic workloads are typically written using OpenGL framework, while general purpose workloads are in C++/CUDA. We focus on the latter.

over the run-list selecting one channel at a time in a weighted round-robin manner. The time for which a channel executes is configurable; if the kernels of a channel complete before its allocated time-slice, the channel is switched out and a new channel is scheduled (work conserving). The number of times that a channel appears on the run-list and whether it can be preempted is also configurable.



Channel C4 completes before its allocated time slot, C2 is scheduled

Figure 3: Channel scheduling in a run-list

The timeslice within a channel could be used to execute the copy or the execution phases. When the channel has multiple streams, the copy and execute phases may run in parallel as seen in Figure 4, depending on availability of resources. Please note that in our challenge model, we assume only one stream per application.

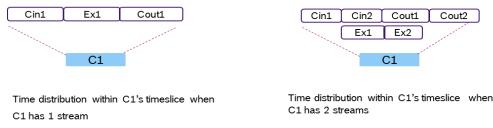


Figure 4: Parallelism with multiple streams

Once a channel is selected, the GPU scheduler dispatches kernels of the selected channel for execution to the SMs (or copy phases to the copy engine). Then, within each SM, its hardware warp scheduler further assigns these commands to execute on different warps (A warp is a group of 32 physical threads, all of which execute in SIMD mode).

#### 2.4. GPU-CPU interaction

A program running on a GPU works in the following way; when a program starts, the CPU copies the data and instructions from host memory domain to GPU memory, this copy is performed using the Copy Engine (CE) as seen in Figure 5. After this operation, the CPU launches one or more kernels: this execution can be either *Synchronous* or *Asynchronous*. If synchronous, the CPU dispatches the work to the GPU and then the CPU waits until the end of the kernel execution. In the asynchronous case, it is possible to computations on the CPU, immediately after dispatching the work to the GPU without waiting for completion (fire and forget), in a work-conserving manner.

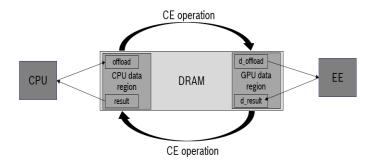


Figure 5: Data transfer handled by the copy engine

## 2.5. Assumptions

For the WATERS Industrial Challenge 2019 we assume the following:

- CPU tasks follow the read, execute and write semantics
- A CPU task offloads workload synchronously or asynchronously to the GPU
- GPU: We assume that applications do not use unified/paged memory but only pinned memory
- GPU: We consider that each application has one custom stream associated with it
- GPU: We assume that there is a single copy engine to carryout host-to-device and device-to-host memory transfers
- GPU: We assume a channel per context (application), so as to have one time slice per application. Different applications might have different time slices.
- GPU: We assume no fine granular modeling of memory accesses from the execution engine. Memory accesses from the EE stage are not explicitly modeled (memory accesses are included in ticks, because copy engine also make use of Level 2 Cache). An extension is later possible

# 3. The Challenge

The challenge consists in analytically master the complex HW/SW system (that will be available as Amalthea model) to answer the following questions:

- 1. Response Time Computation: Given an application consisting of a set of dependent tasks and a given mapping, calculate its end-to-end response time
  - The response time should account for the time for the copy engine to transfer data between the CPU and the GPU.
  - The response time should account for the time for the data transfers between the CPU and the shared main memory considering a read/execute/write semantic.
  - Optionally the offloading mechanism (synchronous/ asynchronous) can be changed to further optimize the end-to-end latencies
  - O Devise a model to account for memory interference when multiple CPU cores and the GPU CE is accessing memory at the same time. The response time analyses should therefore be memory contention aware. An example of a viable memory interference model will be posted in the challenge forum.
- 2. Mapping Challenge: Some tasks can either be mapped to different type of CPUs (A57 or Denver Cores) or a GPU, defining a design space for exploration. Find mappings that (Pareto-) optimize the latency of the different task chains.

# 4. Application Use Case

Researchers in next-generation embedded systems agree that there is a clear need and urgency to demonstrate and bound the predictability of complex heterogeneous systems in terms of end-to-end latencies. In this section we present an overview of the application proposed for the WATERS Industrial challenge 2019.

We developed the prototype of an end-to-end autonomous driving application running on the Tegra TX2 platform<sup>5</sup>, representative of next-generation AD/ADAS systems, because it uses state of the art algorithms in robotics/automotive, mixes different workloads with different criticality levels on the same computing platform, and exploits architectural heterogeneity by concurrently running tasks in the most suitable computational units (i.e., CPU and GPU).

The reference application provides the proper throttle, steering and brake signals to drive a vehicle through a predetermined map of waypoints. Moreover, the vehicle runs specific high-priority tasks to break and/or perform emergency maneuvers to avoid obstacles like pedestrians or bicycles, the so-called Vulnerable Road Users (VRUs). It is important to mention that the application works without using ROS<sup>6</sup>, and all the algorithms are implemented from scratch.

We now show a brief description of the key software tasks running in the system. The green boxes represent the workloads executing on the GPU, while the blue ones execute on the CPU hosts.

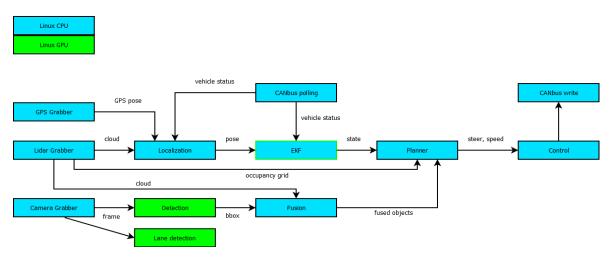


Figure 6: Application tasks

Specifically, the tasks are:

- **GPS Grabber.** This task gets the information from the GPS and sends the data to the *Localization* task. This is typically useful at vehicle/system start up, to precisely localize the vehicle in the map.
- **LIDAR Grabber.** It reads the information from the LiDAR sensor, and builds a point cloud that is shared with the *Localization* and *Fusion* tasks. This task also produces a so-called *occupancy grid* that captures the free space in front of the vehicle. This information is sent to the *Path Planner* task.

<sup>&</sup>lt;sup>5</sup>The TX2 processor is at the base of the <u>NVIDIA Drive board series</u>, the state-of-the-art of high-performance embedded platform for autonomous driving and ADAS systems.

<sup>6</sup>http://www.ros.org/

- **Camera Grabber.** This task processes video frames from the multiple camera streams and sends it to the *Detection* task to perform object detection/classification.
- **Localization.** We implemented a *Particle Filter* localization. This method adopts a probabilistic model to determine the position of the car on the given environmental map. This position information is then merged with the motion estimation coming from the vehicle odometry, and with GPS data, to obtain an accurate and predictive estimate of the vehicle's position. The current pose of the vehicle is sent to the *EKF* task.
- Fusion. In this phase, the information derived from the *Detection* and *Lidar* are fused to increase the degree of confidence of the environment and obstacles detection. The classified road entities are combined with the occupancy grid by the LiDAR, to derive their distance. From this information a 3D grid is populated, which is then is given as input to the *Path Planner*.
- **CANbus polling.** This task snoops the key vehicle information (steer/wheel/break/acceleration status) from the on-board CAN bus and sends it to the *Localization* and *EKF* nodes.
- **Path Planner.** The main purpose of this component is to define and follow a given trajectory. This trajectory is defined as a *spline*, that is, a line built through polynomial interpolation at times on the map that represents at each point the position and orientation that the car will have to follow. The spline can be enriched with additional information such as speed to hold, stop, priorities, etc. The planner sends the goal state of the vehicle (i.e., *target steer and speed*) to the *Control* task.
- Control. This task computes and establishes the speed and steer that must be effectively
  employed from the information that is provided by the *Path Planner* task. In order to
  implement this node, we used two different controllers:
  - O A *Pure Pursuit* controller calculates the steering angle to follow the given trajectory. The operating principle is based on a target point placed on the trajectory to be followed at a distance that varies from the vehicle depending on the speed, the angle between the vehicle and the target determines the steering angle of the vehicle.
  - Then, we use a PID controller to follow the speed profile defined on the trajectory to be followed.

Finally, the commands are sent via CAN bus to the engine control unit in order to perform the actuation.

- **EKF.** The *Extended Kalman Filter* estimates the poses of the vehicle and objects in the world. We implemented the EKF predictor both as a CPU and a GPU version. The data produced is sent to the *Path Planner*.
- **Detection (GPU).** This task is in charge of detecting and classifying the objects in the road. It uses a machine learning approach, with an optimized version of YOLOV2<sup>7,8</sup> for the TX2 platform that exploits CUDNN and TENSORRT. In this context, we re-trained the neural network in order to extend the classification classes of the baseline neural network, in this way, we support the following categories: *Pedestrians, Cars, Trucks, Bus, Motorbikes, Bicycles, Riders, Traffic lights, Traffic signs*. All the objects detected are visualized and the information produced is sent to the *Fusion* task.
- Lane detection (GPU). This task identifies the lane boundaries of the road, allowing us to provide an accurate location of the road boundaries and the shape of each lane.

<sup>&</sup>lt;sup>7</sup> You only look once (YOLO) is a state-of-the-art open-source, real-time object detection system.

<sup>8</sup> tkDNN: https://github.com/ceccocats/tkDNN

CANbus write. This is the final actuation task in application pipeline, and it is in charge of
publishing the steer and acceleration messages into the CAN line, to be sent to actuation
ECUs.

Please note that in the Amalthea model there will be additional unmapped tasks for the mapping challenge.

# 5. Model Description in Amalthea

For describing the system model, we use the Amalthea meta-model version 0.9.3. Amalthea is organized within different sub models like software, hardware, mapping, stimuli, etc.

A complete documentation about the Amalthea version can be found on the official Amalthea Eclipse webpage<sup>9,10</sup>. In the following subsections different modeling concepts are explained that are used for describing the challenge system described in the previous sections.

# 5.1. CPU memory access semantics

We assume that tasks executing on the CPU follow a read/execute/write semantic. In this model, the execution is decoupled into three different phases: a read phase where the data is fetched from memory, an execution phase, where the task performs pure computation and a write phase, when the core writes the computed result back to memory.

Memory accesses are usually represented as label accesses in Amalthea (within a runnable). The size of the label as well as the operation itself (read or write), is specified in the software model. The mapping to memory is specified in the mapping model, while the access latencies/data rates and access path can be specified in the hardware model. Figure 7 shows an example in the challenge model for a Runnable within a Task following the read (label access to  $l1) \rightarrow execute \rightarrow write$  (label access to offload1) policy.

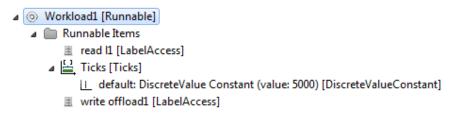


Figure 7: Runnable example for a CPU

## 5.2. GPU Modeling

A GPU can be represented by a processing unit within the Amalthea hardware model. Due to the assumption that every application consists of one stream, it is not necessary to separate the copy engine from the execution engine as this essentially implies that interleaving between copy and execution phases cannot occur. For the abstract modeling of a GPU, we do not model the internal architecture like thread blocks, or the internal memory hierarchy explicitly. Due to its complexity, we also abstract the GPU cache system, this means that the explicit copy operations are executed (see Section 5.3) but all data accesses during the execution on the graphics/compute engine are already accounted in the "ticks" specified in the runnable.

<sup>&</sup>lt;sup>9</sup> https://www.eclipse.org/app4mc/documentation/

 $<sup>^{10}</sup>$  The User Guide contains a timing primer on Amalthea (Concepts  $\rightarrow$  Timing in Amalthea)

# 5.3. GPU Offloading

In Amalthea parallelism is expressed on task level, this means all items (e.g. runnables) within a task are executed sequentially. Therefore, in case a workload is offloaded to the GPU, this workload is modelled as a separate task, which is shown in Figure 8.

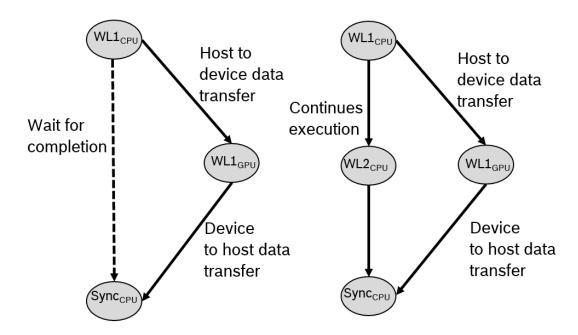


Figure 8: Modelling sync & async offloading with special copy tasks

The offloading requires data to be transferred from the CPU memory region to the GPU memory region (explained in Section 2.4). Figure 9 shows an example for a runnable representing a GPU workload: data transfer from host to device  $\rightarrow$  execution  $\rightarrow$  writing back the results from device to host.

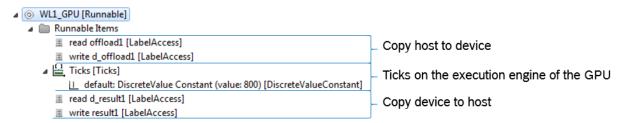


Figure 9: GPU workload example 1 runnable

It is also possible to separate this offloading in three different runnables (1: host to device copy operation, 2: execution, 3: device to host copy operation). Figure 10 shows an example with three runnables and the task calling the runnables.

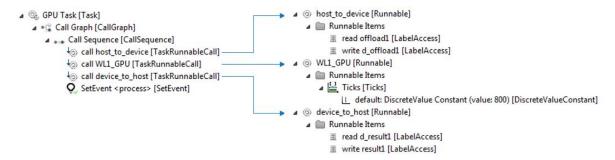


Figure 10: GPU workload example 3 runnables

In addition, the offloading can be performed in *synchronous* or *asynchronous* manner. Figure 8 shows the two different mechanisms.



Figure 11: Synchronous offloading (left) and asynchronous offloading (right)

The workload  $WL1_{CPU}$  is executed on a CPU.  $WL1_{CPU}$  contains label accesses or ticks (to specify the computational cost).

- In the synchronous case, the CPU offloads the work to the GPU, and then actively waits for the execution on the GPU to be completed, the resulting data is copied back from the GPU to the CPU and the corresponding event *SetEvent*<sup>11</sup> is set by the GPU task (see Figure 10).
- In the asynchronous case, after the CPU offloads the work to the GPU, additional workloads on the CPU can be executed (see Figure 11 (right), WL2<sub>CPU</sub>) before entering the synchronization point (active waiting).

The concrete modeling is shown in Figure 11. The offloading is triggered with the  $GPU_{-}$  offloading inter process trigger within the task mapped to a CPU. This trigger activates a task which is mapped to a GPU and contains  $WL1_{GPU}$ . On the left side of the figure, the synchronous case is modeled by directly entering the WaitEvent. On the right side, in the asynchronous case, another workload ( $WL2_{-}$  CPU) is executed before the WaitEvent is entered. The event itself is set in the task mapped to the GPU after finishing  $WL1_{GPU}$  (see SetEvent in Figure 10). In both scenarios, the ClearEvent resets the synchronization barrier.

### 5.4. GPU Scheduling

For the GPU Scheduling, we assume one combined scheduler for the GPU (instead of having a separate scheduler for the copy engine and the execution engine), this is possible due to the assumption that every application has just one stream (currently represented with one task executed

<sup>&</sup>lt;sup>11</sup> Please note that in the Amalthea model the mechanisms *wait, set,* and *clear event* originated from OSEK concepts, and are thus currently called OSEvents. In future Amalthea releases this concept will be generalized.

on the GPU). Therefore, given an application, the time slice allocated to its channel is used for both copying and execution.

We do not explicitly model channels in Amalthea but associate one GPU task to each application. These tasks are scheduled by the custom time slice scheduler of the GPU. The scheduling policy is explained in section 2.3.

The aforementioned weighted round robin scheduler policy is not directly supported in Amalthea, therefore a custom scheduler is used. The individual time slices for the different tasks can be specified in the mapping model when mapping a task to a scheduler "TaskAllocation". An example is shown in Figure 12.

```
D=0 Allocation: Scheduler GPU_Sched -- Processing Units ( GP10B ) [SchedulerAllocation]

Allocation: Scheduler GPU_Sched -- Task GPU Task 1 [TaskAllocation]

timeslice -> 100 μs [ParameterExtension]

Allocation: Scheduler GPU_Sched -- Task GPU Task 2 [TaskAllocation]

timeslice -> 150 μs [ParameterExtension]
```

Figure 12: Specifying individual time slices for tasks

# 5.5. Mapping dependent resource consumption

One of the challenges is to optimize end-to-end latencies by changing the task mapping of the given model. Figure 13 shows an Amalthea modelling example, which includes multiple tick values for different mapping targets: e.g. workload WL3 requires a default of 6000 ticks when mapped to the Cortex A57, and 3000 ticks when mapped to the GPU.

```
■ WL3 [Runnable]

Runnable Items

read inputData [LabelAccess]

Ticks [Ticks]

Lefault: DiscreteValue Constant (value: 6000) [DiscreteValueConstant]

Definition Denver -- DiscreteValue Uniform Distribution[5000, 6500] [TicksEntry]

Definition GPU_def -- DiscreteValue Constant (value: 3000) [TicksEntry]

write outputData [LabelAccess]
```

Figure 13: Extended ticks in Amalthea

It is important to note that when a task is mapped to the GPU, additional costs due to memory transfers for the offloading (host to device and vice versa) have to be considered. Figure 14 shows the same workload in case it is mapped/offloaded to a GPU where two additional memory accesses for the copy operations are inserted. This model transformation has to be done by a tooling exploring different mapping alternatives.

Figure 14: Transformation for GPU offloading

# List of Figures

| Figure 1: Multi-heterogeneous hardware platform                          | 2  |
|--------------------------------------------------------------------------|----|
| Figure 2: Jetson TX2 hardware architecture                               | 2  |
| Figure 3: Channel scheduling in a run-list                               | 4  |
| Figure 4: Parallelism with multiple streams                              | 4  |
| Figure 5: data transfer executed by the copy engine                      | 5  |
| Figure 6: Application tasks                                              | 7  |
| Figure 7: Runnable example for a CPU                                     | 9  |
| Figure 8: Modelling snyc & async offloading with special copy tasks      | 10 |
| Figure 9: GPU workload example 1 runnable                                | 10 |
| Figure 10: GPU workload example 3 runnables                              | 11 |
| Figure 11: Synchronous offloading left and asynchronous offloading right | 11 |
| Figure 12: Specifying individual time slices for tasks                   | 12 |
| Figure 13: Extended ticks in Amalthea                                    | 12 |
| Figure 14: Transformation for GPU offloading                             | 12 |