
Extending an Automated Testing Framework to
Support Agile eXtreme Programming Development
Concepts in an Embedded Real-Time Environment

Militina Gorobets
Department of Electrical and Computer Engineering,

University of Calgary
Calgary, Canada

Michael Smith (Senior Member IEEE)
Department of Electrical and Computer Engineering,

University of Calgary
Calgary, Canada

Mike.Smith @ucalgary.ca

Albert Tran
Department of Electrical and Computer Engineering,

University of Calgary
Calgary, Canada

James Miller
Department of Electrical and Computer Engineering,

University of Alberta,
Edmonton, Canada
jumm@ualberta.ca

Abstract—Automated testing frameworks provide a useful
tool whether employing test-last or Agile eXtreme Programming
test driven development test-first approaches. Additional consid-
eration of how the testing framework’s performance may gener-
ate false positive or negative test results becomes important when
an embedded system’s real-time performance must be taken into
account. In this paper, we consider the advantages and disad-
vantages of two tools to improve the framework’s performance
by co-opting, and extending, on-chip hardware performance
monitors to enhance Embedded-Agile development. We discuss
providing faster full code test coverage analysis and low-
overhead live black-box and white-box testing using a FPGA-
based test insertion co-processor. The co-processor development
was used as a test bench for exploring FPGA-Agile development

Keywords—Embedded-Agile Development, FPGA-Agile Devel-
opment, Automated testing frameworks, real time systems.)

I. INTRODUCTION

Grenning [1] was an early proponent of adapting the business
(Enterprise) world’s Agile processes [2] for embedded system
development. It was reasoned that Agile’s barely sufficient
processes would be advantageous for embedded engineers
who recognized the need for reliable products and had exten-
sive domain knowledge, but were not eager to implement pro-
cess improvement edicts from above.
 The eXtreme Programming Inspired (XPI) embedded sys-
tem lifecycle [3] has multiple test driven development (TDD)
stages to support a hardware-software co-design process for
embedded devices requiring an interaction between real-time
digital signal processing (DSP) algorithms and external hard-
ware. Early XPI stages use TDD for identification of the cus-

tomer’s (research team) requirements. Existing customer tests
and new unit tests are used to support initial development us-
ing research-oriented development in a high level language
(e.g. MATLAB). Later XPI stages extend the tests again dur-
ing C++ simulation and movement onto a system-under-test
(SUT) to handle embedded peripheral inter-action.
 Enterprise, or business-oriented, Agile’s TDD processes
require refocusing for the specialized Embedded Agile envi-
ronment. For example, the critical need to meet expected strict
embedded system real-time requirements would suggest an
early evaluation of non-functional code aspects (time and
memory requirements) that might be considered inappropriate
by some advocates who adhere more strictly to the standard
Agile concepts. Thus the standard concept of “Refactoring for
code maintainability” from Enterprise-Agile will need to be-
come subservient to Embedded-Agile approaches of “Refac-
toring code for speed or power consumption” to take ad-
vantage of specific processor architectural characteristics [3].
 In this paper, we consider two tools to providing additional
support for the automated testing framework that a priori is
needed for Embedded-Agile development, and would prove
useful in a more conventional test-last development environ-
ment. We first discuss the concept of co-opting existing on-
chip hardware performance monitors to provide low-overhead
test coverage analysis tool, E-RECOVER.This tool is intended
to reduce the introduction of potential false positive or nega-
tive results as a result of impacting system performance during
testing. The theoretical and actual performance impact of this
tool is discussed. The second part of the paper discusses the
concepts of a prototype FPGA Agile test support, ATS, co-

processor designed to provide low-overhead, live, black-box
and white-box testing.

II. TOOL 1 : LOW OVERHEAD TEST COVERAGE ANALYSIS

 Developers and testers use code coverage tools to gauge
which statements have (or have not) been executed during the
testing process. Statements that have not been executed (i.e.
untested code) have a potential for leaving latent defects in the
code. Incorporating coverage measurements into the software
reliability analysis has shown improvements in system relia-
bility estimations, providing the developer with insight on
where to focus testing activities [4]. Collecting and analyzing
coverage report data throughout the project may shed light on
the efficiency of the performed code coverage testing as prod-
uct evolves. This may further help developers effectively write
tests to target areas of code that would potentially be more
error-prone.
 Code coverage analysis is as important on embedded sys-
tems as on desktop systems; however, the embedded develop-
er is operating under more stringent memory constraints. Real-
time performance issues means that code coverage analysis
must not distort the performance characteristics of the system
under test (SUT) [5]. To solve such conflicts, embedded de-
velopers do have advantages over their desktop counterparts;
in particular, easier access to a wider and more sophisticated
range of hardware performance monitoring capabilities.

A) Software based instrumentation
 Traditional methods of providing code coverage rely on a
software approach to code instrumentation. This process in-
serts software probes into source- or object-code, which rec-
ord whether particular segments of a program are executed [6].
As the code is executed, the inserted code probes cause soft-
ware interrupts (SWI) to be activated whenever a given branch
node is reached. As is shown schematically in Figure 1, the
SWI stops the current code execution and invokes a software
interrupt service routine (ISR) that identifies the code location
and records the code coverage information. Code instrumenta-
tion can deliver high coverage rates but significantly changes
the execution characteristics of a program from its normal
flow, as well as impacting the code size. Tikir and Hol-
lingsworth [6] indicate that the PURECOV tool, based on this
approach, slows down the code execution of the SPEC95
benchmark suite from 1.8 (Tomcatv) to 19.8 times (Perl).
 To reduce such overhead, they suggest incrementally insert-
ing the necessary instrumentation code the first time a func-
tion is called in order to decrease the instrumentation costs and
using more sophisticated analysis of possible execution paths.
They indicate that the cost of determining when to invocate
dynamic deletion of “used” instrumentation code to improve
analysis of long running programs may negate any time sav-
ings. On an embedded system, there is a further problem. Un-
necessary instrumentation has the potential of forcing the de-
veloper to load the program under test into slow off-processor
memory incurring a 2 to 6 times performance penalty.

Fig. 1 Source code instrumentation causes code bloat, as well
as high overheads introduced when jumping into/out of soft-
ware probe code (based on [17]).

Fig. 2 Block diagram of a hardware assisted code coverage
tool using the branch vector TRACE hardware

B) Hardware Assisted Code Coverage

Direct use of the internal hardware present on some processors
to assist the code coverage analysis can overcome software
instrumentation issues. VTune and OProfile tools periodically
sample the processor’s program counter (PC) while the pro-
gram is running, with addresses then matched to the original
source files. However, Anderson et al. [7] found that the
sparseness of the PC samples provided only a fraction of full
software instrumentation information, necessitating repeated
executions and negating any gains in elapsed developer time
 To overcome this sparse coverage issue we can make use of
the special hardware performance monitors (HPM) designed
into modern processors We have investigated making use of
branch vector management provided by hardware TRACE
Units, such as those of the Analog Devices family of Blackfin
processors. Here, a hardware stack automatically captures
program code flow vectoring information. If this information
is cross referenced to the original source code during post pro-
cessing, there is no need to record sparse general PC infor-
mation.
 The Blackfin family is designed for real-time DSP opera-
tions and includes features that can be co-opted to further re-

duce monitoring overhead. The “Loop Compression” option
prevents the logging of recent duplicate entries onto the hard-
ware stack, reducing the amount of branch vector data logging
that is generated for (i) loops calling leaf-functions, or (ii) the
logging generated for the double nested loops common in al-
gorithms used in embedded systems for DSP-oriented applica-
tions. In addition, (iii) the TRACE unit also does not log any
program counter discontinuities associated with zero-overhead
(hardware) loops which an optimizing compiler will introduce
to replace standard software loop operations. On the Blackfin,
the combination of the two available zero- overhead hardware
loop units with 2-level loop compression offers the potential
for considerable performance gains.
 Fig. 2 shows how this TRACE unit can be used within a
tool that provides the same detailed coverage information as
found with software instrumentation but with minimal per-
formance degradation. However, for the tool to be useful with-
in a test driven development (TDD) process, reports must be
generated from the extensive full coverage details in an expe-
dient manner. Again, extending the ideas found to improve the
speed of software instrumentation, we propose adding control
features (1) to identify, in real time, the code (functions) cur-
rently under test; (2) to generate code coverage reports for
only those functions that are currently in the scope of interest
of the developer; and (3) to lower the performance impact of
the tool by automatically activating the HCM for only those
functions currently of interest

III. HARDWARE-BASED CODE COVERAGE IMPLEMENTATION

The new Rapid Efficient Code COVERage tool, E-
RECCOVER, was added to the Source-Forge UnitTest++ test-
ing framework initially targeting the Blackfin processor for its
distinct feature of a hardware TRACE unit which stores the
program instruction branched to and the memory address of
the branch instruction which caused the discontinuity. Figure
2 provides the block diagram of a hardware assisted code cov-
erage tool using the branch vector TRACE hardware. The
original subroutines and functions are left unmodified, except
for the system main() where the TRACE buffer hardware is
configured. When the TRACE hardware buffer gets full, the
processor will generate a TRACE exception handled by an
exception service routine (ESR). The contents of the TRACE
buffer will be moved to a software holding array. Otherwise,
the ESR will pass the unhandled exception to the generic sys-
tem exception handler. Because the custom ESR handler is
written in optimized Blackfin assembly, it occupies only a few
hundred bytes of code space, and can handle transferring the
TRACE buffer contents very efficiently.
 Several components are required to generate meaningful
output from the list of branch vectors. Because the physical
code memory location may be moved around on each compi-
lation, a code mapping script must be run every time the pro-
ject is compiled. This source mapping table (SMT) was origi-
nally generated via an exposed VisualDSP++ IDE Automation
Interface based on Microsoft’s Component Object Model
(COM) technology, accessed through a COM connection be-

tween the EmbeddedUnit GUI and VDSP. However, this ap-
proach took roughly 60 seconds for every 10k lines of code
(LOC), too slow for repeatedly running the tests required for a
TDD approach. This bottleneck was overcome by using in-
termediate debug output files generated during code compila-
tion which were passed through an elfdump tool to create two
intermediate DWARF-format files source code/memory ad-
dress mapping and the program symbol table, which Embed-
dedUnit used to generate the SMT in less than one second for
10 KLOC.

A. Expected performance analysis
 As with other instrumentation approaches, the performance
impact of the proposed hardware assisted test coverage tool
can be expected to be very algorithm dependent. However, an
estimate of the expected average performance impact of the
tool can be determined by making a number of simple as-
sumptions. (i) L lines of high-level code are executed, each
requiring N processor clock cycles taking a time T = N L cy-
cles to execute; (ii) a fraction k of the code is instrumented for
hardware assisted code coverage; (iii) a branch occurs every B
lines of the high level language; (iv) the TRACE unit activates
an exception service routine only when the branch vector
hardware stack of H entries is full; (v) the disruption of a pro-
cessor pipeline of depth P due to entry into and exit from the
exception service routine results in a 2P cycle overhead; (vi)
the exception routine to read the branch vector pairs (source
and destination) from the TRACE unit and store them to local
memory for later recovery requires 2 * H * M cycles where
M is number of cycles to perform a memory access; and (vii)
R registers must be saved and recovered during the exception
service routine for a performance cost of 2 * R * M cycles.
This leads to a “conservative” estimate of the performance
impact of using hardware assisted code coverage is

PerformanceImpact = InstrumentationOverhead/T
= kL(2P + 2(H + R)M)/(BHNL)

 A worse case practical estimate of the overhead can be ob-
tained by assuming 100% code coverage requirement (k = 1),
with each high-language statement requiring 5 to 30 cycles to
execute (average N = 8) and branches occurring on average
every B = 5 high-level statements. For the ADSP-BF5XX
family, we would expect an instruction pipeline of depth P =
10, and R = 7 registers saved. The hardware TRACE stack of
depth H = 16 entries requires an average of 2 * M = 8 cycles
for each branch vector pair stored to internal memory for later
analysis. Thus the expected worse-case theoretical perfor-
mance impact of the proposed fast full code coverage tool is
approximately 30%. In practice, we would expect a signifi-
cantly lower performance impact as we have not taken the
HCM loop compression capabilities into account during the
analysis, leading to an overhead of (2P + 2 (H + R) M) / H or
approximately 10 – 12 cycles for each branch recorded, lower
overhead than what is achievable for software instrumentation
approaches.

B. Actual performance impact

In a test, the execution time (cycle count) of an un-
instrumented function DemoFunction() was determined. This
consisted of a quadruple nested loop with the inner loop con-
ditionally calling a leaf function WriteAudioPort() that writes
to a device (audio peripheral) along an external processor bus.
This function models characteristics found in many DSP algo-
rithms. Given the large number of branches occurring in this
over simplified function, the overall performance impact of
code coverage monitoring will be exaggerated; but the true
performance impact / branch vector generated ratio becomes
straight forward to determine.
 Our EmbeddedUnit testing framework allows determina-
tion of the non-instrumented time for the DemoFunction().
Extensions to the framework allowed activating and deactivat-
ing the code coverage hardware via CODE_TRACE() macros,
with extended features to permit the evaluation using standard
TRACE hardware features and then activating the special loop
compression activated features.
 The DemoFunction() had an inner loop causing three
jumps (conditional evaluation, jump into, and out of
WriteAudioPort()). With trip counts for the 4 loops of 14, 16,
18, and 20, the expected number of branch vectors generated
was around 242,000. However, the results from running the
program showed only 167,000 branches occurring. Detailed
inspection of the machine code showed that the optimizing
compiler was able to reduce the C++ inner loop conditional
statements into single conditionally-executed machine level
instructions (if-condition-do-assignment). These statements
reduce to no-operation instructions if the condition is not met;
avoiding any pipeline disruptions and associated performance
degradation – a typical example of the algorithm and proces-
sor dependence associated with program flow.
 With a baseline non-instrumented code execution of 4.95
million cycles, the overhead associated with recording each
branch is about 17 cycles per branch vector, compared to the
10 – 12 cycles per vector predicted in the previous section.
Activating the loop compression option caused a function call
to WriteAudioPort() in the inner (zero-overhead hardware-
controlled) loops to be logged only once for every iteration of
the outer loop. With the 2 Blackfin hardware loop registers
handling two inner loops and the two outer loops handled by
software, the branch count was calculated from the assembly
code generated by the compiler as 14 * 16 + 18 * 20 = 808;
which was confirmed by the EmbeddedUnit measurements.
 The loop compression option reduces the number of branch
vectors recorded, but not the overhead for documenting an
individual branch vector; a cost that remains constant. With
this example involving essentially continual branching, the
performance impact for full code coverage is 56% when using
the un-optimized E-RECCOVER tool settings. This reduces to
an overhead of 0.25% after activating the TRACE unit’s loop
compression option to cause the removal of over 99% of the
logging information recognized as being redundant. This per-
formance hit is an order of magnitude smaller than reported by
Shye et al. [14] sampling the Itanium BVB every 10 million

clock cycles while retaining the 100% code coverage available
from software instrumentation.

IV. TOOL 2: FPGA AGILE TEST SUPPORT, ATS, CO-PROCESSOR

 Combining in-house and third party threads may be needed
in an embedded application to meet changing market require-
ments. In an Enterprise environment, software instrumentation
of the threads is one approach used to determine whether the
correct locks (mutexes) are held when accessing shared
memory. However, positives and negatives into data race
analysis and may require more memory than readily available
in a real-time embedded development environment.
 Many modern embedded processors and micro-controllers
provide low-level developer debugging support through
breakpoints activated by on-chip hardware bus-watch units
that monitor (snoop) bus activity. Huang et al. [9] proposed
co-opting these units to produce a hardware-assisted, low-
overhead and low-memory requirement E-RACE tool capable
of inserting data-race tests upon recognizing accesses to
shared memory. They indicated that such hardware-supported
data-race analysis approaches would be particularly useful
when the original (legacy or third party) thread source code
was not readily available for implementing software instru-
mented shared memory access detection. The authors further
suggested that such a low-overhead tool would also prove
useful when developing new threads via an Embedded-Agile
TDD approach.
 Huang et al. [9] evaluated the E-RACE tool concept using
the Analog Devices family of Blackfin (ADSP-BF5XX) pro-
cessors. The BF5XX debug instruction-bus watch unit could
be programmed to throw exception events on recognizing spe-
cific instruction-bus activity. The associated exception service
routine (eXSR) was then co-opted to insert a low overhead
hardware-supported test to determine whether a monitored
thread unblocked in time to meet desired hardware or software
hard time constraints. However the BF5XX data-bus watch
unit threw emulation events upon recognizing shared data
memory accesses. Portions of the associated emulation service
routine (ESR) run on the development workstation making
this approach 10,000+ times less time efficient in inserting
tests than via an eXSR. This voided many of the potential ad-
vantages of using a hardware-assisted tool to support an Ac-
ceptance Test Driven Development (A-TDD) Embedded-
Agile approach to developing threads without hidden shared
memory data races. Smith et al. [10] suggested that problems
associated with the different capabilities of the existing data-
watch and instruction-watch units could be overcome by the
development of an external FPGA-based ATS coprocessor.
This approach, shown schematically in Fig. 3, is suitable for
any embedded system, and would use an interrupt to inform
the SUT that the co-processor had recognized the bus activity
associated with a particular thread accessing shared memory.
There would be no overhead when the ATS co-processor was
simply monitoring bus activity, unlike a software instrumenta-
tion approach.

A. Identification of ATS Requirements
 Development of the ATS coprocessor was undertaken with
two results in mind. The first was to meet the identified need
to extend an automated testing framework to better support.
Embedded-Agile development. The second was to provide a
test bench to identify potential Agile development approaches
to develop a coprocessor. The assumption here was that the
final real time performance of a system using software-based
DSP algorithms was insufficient for customer needs. This
would necessitate that existing parts of the algorithm be
moved over to an FPGA-based DSP coprocessor to enhance
performance as shown schematically in Fig. 4.
 We classify this as an FPGA-Agile development approach
as tests for the existing software already exist, and are there-
fore available to monitor the development, and final perfor-
mance of the FPGA DSP co-processor. To explore potential
generalizable approaches to Embedded-Agile XP development
of FPGA products we deliberately started development of the
Test Support (ATS) co-processor using the Agile technique of
using customer wish list items (WLx) as an approach to ex-
pressing requirements that identify the desired hardware-based
ATS FPGA co-processor characteristics. We then take a cus-
tomer identified high priority item from the wish-list and then
attempt to meet the spirit of a number of Agile extreme pro-
gramming (XP) development concepts. Each development
stage (Sprint) should start with the definition of tests that must
be met to satisfy the identified wish list requirement. Just
enough code should then be written to satisfy those tests. The
Sprint end result should be a minimal viable product (MVP)
with capabilities that satisfy the tests derived from the re-
quirements. The minimum viable product concept delineates a
difference between Agile XP and standard Embedded or
FPGA development approaches. The MVP is not a prototype
whose development is considered wasteful in both time and
other resources in an Agile concept. The MVP is a fully-
functional unit of the final product written to a high standard

with the intention that it can be retained and released onto the
market without the cost of modification.
— WL1: The ATS will contain watch unit blocks capable of
recognizing specific address and data bus activities/
— WL2: Each watch unit would contain a (watchdog) timer
which, paired with an instruction bus, could watch activities to
evaluate hard-time constraints of a particular thread.
— WL3: A pair of bus-watch unit registers would provide the
capability to efficiently watch a range of memory locations
shared across new and legacy threads.
 — WL4: On identifying a watch condition match, the ATS
issues an interrupt to the processor to cause a test insertion.
— WL5: A separate communication channel exists between
the processor and the ATS co-processor to allow indication of
which watch units. The ATS must be temporarily deactivated
to allow the interrupted watched condition to complete.
— WL6: A specified number of particular bus activities must
occur before the ATS again communicates the recognition of
the watched activity

B. Planned Co-design Embedded-Agile Migration Stages
 We propose that there be several migration stages (MS) to
provide the maximum opportunities to meet the Agile XP re-
quirement of maintaining a minimum viable product (MVP)
during Co-design Embedded-Agile development stages.
MS1: Previous tests have been used to validate the existing
DSP blocks in Fig. 4, and indicate that software components
DSP4 and DSP5 need to be parallelized, migrated to a copro-
cessor, to meet the embedded system’s real-time requirements.
MS2: The functionality of each proposed FPGA component
block, M-DSPx, required by a DSPx software component is
mocked in software and validated using the existing tests.
Mocking will suggest how each DSPx block might be config-
ured inside the FPGA co-processor. If the mocked code is
reconfigured as RISC-like operations (ROPs) then the number
of parallel ROPs possible within a “reasonable” FPGA archi-
tecture provides an early proxy to whether the required speed
improvement will be achieved following migration.
MS3/MS4: The functionality of the SPI-supported test encod-
er and interpreter required for the specific application is iden-
tified with the mocking validated with the existing tests. In
MS3 the encoder and Master SPI interface together with the
interpreter and SPI slave interface are all mocked in software.
Then, MS4, the mocked encoder and decoder are interfaced
with the processor’s actual SPI hardware working in echo
mode, i.e. the SPI Master-out slave-in (MOSI) line tied back
to the Master-in slave-out (MISO) line. These combined soft-
ware and hardware mocking stages are validated using the
existing tests.MS5: By following an Agile TDD process,
the coding of the mocked SPI unit and interpreter will have
been preceded by the development of additional unit tests.
These tests can be used to validate the result of migrating. the
mocked SPI slave unit, and then the mocked test interpreter,
onto the actual FPGA MS6: The DSP algorithm blocks identi-
fied in MS1 are then migrated. Black box unit and acceptance
testing will be possible through the SPI slave unit and test
interpreter now functioning on the FPGA

Fig. 3. Schematic of the operation of an FPGA-based ATS
co-processor. Tests are needed for new and legacy code to
ensure that the shared memory accesses only occur when
threads own the proper MUTEX values. Without the code
re-compilation needed to support software instrumentation,
the ATS co-processor’s watch units (WUs) perform low-
overhead snoop operations on the processor’s data buses to
identify shared memory access and enabling the insertion of
tests to recognize potential race conditions.

Fig. 4: Schematic of TDD migration (hardware-refactoring) of an existing (tested) DSP algorithm from a C++ implementation to
an FPGA co-processor. The Hardware-Software refactoring process is supported at unit- and acceptance-test levels through tests
developed during earlier XPI stages. The DSP4 block has already been migrated to the FPGA as M-DSP4, while DSP5 has been
planned for migration as PM-DSP5. The SPI-supported test encoder and interpreter allow separation of the validation of the co-
processor functionality from the processor dependent stage of integrating the co-processor onto the embedded system busses.

MS7: With the functionality of the FPGA co-processor estab-
lished through the SPImocked address, data and control bus
operations, the co-processor can then be connected to the ac-
tual embedded system buses. Tests for this stage can still con-
veniently involve use of the SPI test interpreter when appro-
priate. Details of this final processor dependent stage is be-
yond the scope of the current article but has been outlined for
the Analog Devices BF5XX family.

V. RESULTS FROM ATS COPROCESSOR DEVELOPMENT

Agile processes have been widely used in software develop-
ment, and recently migrated to embedded systems. We ex-
plored the adaptation and adoption of Agile processes to ad-
dress the aspect of reliable development of FPGA-based co-
processors. We explored an initial Hardware-Software Co-
Design Embedded-Agile XP process based on the assumption
that an existing C++ program must be migrated onto an
FPGA-based co-processor to improve real time performance,
or onto an FPGA-based soft processor to meet cost or power.
 These processes were demonstrated through the develop-
ment of an Agile Test Support (ATS) co-processor. A Test-
Encoder-Interpreter and a Result-Encoder-Interpreter interface
was used to achieve an automated testing framework. Alt-
hough the ATS development was successful using this ap-
proach, our experiments indicated that it was inefficient to
attempt to directly validate the existing C++ DSP algorithms
ported on a one-to-one basis to a FPGA coprocessor from the
CPU side. A far better approach would be to migrate the ex-
isting tests into a FPGA Agile testing framework. The original
embedded system tests can then be used as acceptance tests
for the integrated co-processor.

VI. CONCLUSION

In this paper, we having considered two tools to improve a
testing framework’s support for Embedded-Agile development
by co-opting, and extending, on-chip hardware performance
monitors to support faster full code test coverage

analysis and low-overhead live black-box and white-box
testing using a FPGA-based test insertion co-processor.

ACKNOWLEDGMENT

Financial support was provided by Analog Devices and Natu-
ral Sciences and Engineering Council of Canada (NSERC)
through a Collaborative Research and Development grant
(CRD 299423-03), NSERC Discovery Grants (RGPIN/03652-
2007 and 2016) and the University of Calgary.

REFERENCES

[1] J. Greening, “Extreme programming and embedded system

development, Embedded Systems Conference, 2002.

[2] K. Beck. “Test Driven Development: By Example”. Addison-Wesley
Professional, 2002.

[3] M. Smith, J. Miller, L. Huang, and A. Tran., “A more agile approach to
embedded system development”, IEEE Software, Vol. 26#3, 50–57,
2009.

[4] M. Chen, M. Lyu and W. Wong, “Effect of Code Coverage on Software
Reliability Measurement”, IEEE Transactions on Reliability, Vol. 50,
165 – 170, 2001.

[5] C-Y. Huang, C-H. Chiu, C-H. Lin and H-W. Tzeng, “Code Coverage
Measurement for Android Dynamic Analysis Tools”, IEEE International
Conference on Mobile Services (MS2015), 209 – 216, 2015.

[6] N. Kumar, B. R. Childers et al.,”Low overhead program monitoring and
profiling.” Proc. of the 6th ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering. 28-34, Lisbon,
Portugal, ACM. 2005.

[7] M. Tikir and J. Hollingsworth, “Efficient Instrumentation for Code
Coverage Testing”, Proceedings of International Symposium on
Software Testing and Analysis, 86-96, 2002,

[8] J. Anderson, L. Berc, J. Dean, S. Ghemawat et al., “Continuous
Profiling: Where have all the cycles gone?, ACM Trans. on Computer
Systems, 15:4, 357 – 390, 1997.

[9] L. Huang, M Smith, A. Tran, J. Miller, “E-RACE, A Hardware-Assisted
Approach to Lockset-Based Data Race Detection for Embedded
Products”, IEEE 19th International Symposium on Software Reliability
Engineering, ISSRE Seattle, USA, 2008.

[10] M. Smith, D. Deng, S. Islam, and J. Miller. “Enhancing Hardware
Assisted Test Insertion Capabilities on Embedded Processors using an
FPGA-based Agile Test Support Co-processor” J. Sig. Processing
Systems, 1–14, 2013.

