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Abstract—Automated testing frameworks provide a useful 
tool whether employing test-last or Agile eXtreme Programming 
test driven development test-first approaches. Additional consid-
eration of how the testing framework’s performance may gener-
ate false positive or negative test results becomes important when 
an embedded system’s real-time performance must be taken into 
account.  In this paper, we consider the advantages and disad-
vantages of two tools to improve the framework’s performance 
by co-opting, and extending, on-chip hardware performance 
monitors to enhance Embedded-Agile development.  We discuss 
providing faster full code test coverage analysis and low-
overhead live black-box and white-box testing using a FPGA-
based test insertion co-processor.  The co-processor development 
was used as a test bench for exploring FPGA-Agile development 

Keywords—Embedded-Agile Development, FPGA-Agile Devel-
opment, Automated testing frameworks, real time systems.) 

I. INTRODUCTION 

Grenning [1] was an early proponent of adapting the business 
(Enterprise) world’s Agile processes [2] for embedded system 
development. It was reasoned that Agile’s barely sufficient 
processes would be advantageous for embedded engineers 
who recognized the need for reliable products and had exten-
sive domain knowledge, but were not eager to implement pro-
cess improvement edicts from above.  
    The eXtreme Programming Inspired (XPI) embedded sys-
tem lifecycle [3] has multiple test driven development (TDD) 
stages to support a hardware-software co-design process for 
embedded devices requiring an interaction between real-time 
digital signal processing (DSP) algorithms and external hard-
ware. Early XPI stages use TDD for identification of the cus-

tomer’s (research team) requirements. Existing customer tests 
and new unit tests are used to support initial development us-
ing research-oriented development in a high level language 
(e.g. MATLAB). Later XPI stages extend the tests again dur-
ing C++ simulation and movement onto a system-under-test 
(SUT) to handle embedded peripheral inter-action.  
    Enterprise, or business-oriented, Agile’s TDD processes 
require refocusing for the specialized Embedded Agile envi-
ronment. For example, the critical need to meet expected strict 
embedded system real-time requirements would suggest an 
early evaluation of non-functional code aspects (time and 
memory requirements) that might be considered inappropriate 
by some advocates who adhere more strictly to the standard 
Agile concepts. Thus the standard concept of “Refactoring for 
code maintainability” from Enterprise-Agile will need to be-
come subservient to Embedded-Agile approaches of “Refac-
toring code for speed or power consumption” to take ad-
vantage of specific processor architectural characteristics [3].  
    In this paper, we consider two tools  to providing additional 
support for the automated testing framework that a priori is 
needed for Embedded-Agile development, and would prove 
useful in a more conventional test-last development environ-
ment.  We first discuss the concept of co-opting existing on-
chip hardware performance monitors to provide low-overhead 
test coverage analysis tool, E-RECOVER.This tool is intended 
to reduce the introduction of potential false positive or nega-
tive results as a result of impacting system performance during 
testing. The theoretical and actual performance impact of this 
tool is discussed. The second part of the paper discusses the 
concepts of a prototype FPGA Agile test support, ATS, co-



processor designed to provide low-overhead, live, black-box 
and white-box testing.  

II. TOOL 1 : LOW OVERHEAD TEST COVERAGE ANALYSIS 

    Developers and testers use code coverage tools to gauge 
which statements have (or have not) been executed during the 
testing process. Statements that have not been executed (i.e. 
untested code) have a potential for leaving latent defects in the 
code. Incorporating coverage measurements into the software 
reliability analysis has shown improvements in system relia-
bility estimations, providing the developer with insight on 
where to focus testing activities [4]. Collecting and analyzing 
coverage report data throughout the project may shed light on 
the efficiency of the performed code coverage testing as prod-
uct evolves. This may further help developers effectively write 
tests to target areas of code that would potentially be more 
error-prone. 
   Code coverage analysis is as important on embedded sys-
tems as on desktop systems; however, the embedded develop-
er is operating under more stringent memory constraints. Real-
time performance issues means that code coverage analysis 
must not distort the performance characteristics of the system 
under test (SUT) [5]. To solve such conflicts, embedded de-
velopers do have advantages over their desktop counterparts; 
in particular, easier access to a wider and more sophisticated 
range of hardware performance monitoring capabilities.  
     
A) Software based instrumentation 
   Traditional methods of providing code coverage rely on a 
software approach to code instrumentation. This process in-
serts software probes into source- or object-code, which rec-
ord whether particular segments of a program are executed [6]. 
As the code is executed, the inserted code probes cause soft-
ware interrupts (SWI) to be activated whenever a given branch 
node is reached. As is shown schematically in Figure 1, the 
SWI stops the current code execution and invokes a software 
interrupt service routine (ISR) that identifies the code location 
and records the code coverage information. Code instrumenta-
tion can deliver high coverage rates but significantly changes 
the execution characteristics of a program from its normal 
flow, as well as impacting the code size. Tikir and Hol-
lingsworth [6] indicate that the PURECOV tool, based on this 
approach, slows down the code execution of the SPEC95 
benchmark suite from 1.8 (Tomcatv) to 19.8 times (Perl).  
    To reduce such overhead, they suggest incrementally insert-
ing the necessary instrumentation code the first time a func-
tion is called in order to decrease the instrumentation costs and 
using more sophisticated analysis of possible execution paths. 
They indicate that the cost of determining when to invocate 
dynamic deletion of “used” instrumentation code to improve 
analysis of long running programs may negate any time sav-
ings. On an embedded system, there is a further problem. Un-
necessary instrumentation has the potential of forcing the de-
veloper to load the program under test into slow off-processor 
memory incurring a 2 to 6 times performance penalty.  

 
Fig. 1 Source code instrumentation causes code bloat, as well 
as high overheads introduced when jumping into/out of soft-
ware probe code (based on [17]). 
 

 
Fig. 2 Block diagram of a hardware assisted code coverage 
tool using the branch vector TRACE hardware 
 

B) Hardware Assisted Code Coverage  

Direct use of the internal hardware present on some processors 
to assist the code coverage analysis can overcome software 
instrumentation issues.  VTune and OProfile tools periodically 
sample the processor’s program counter (PC) while the pro-
gram is running, with addresses then matched to the original 
source files. However, Anderson et al. [7] found that the 
sparseness of the PC samples provided only a fraction of full 
software instrumentation information, necessitating repeated 
executions and negating any gains in elapsed developer time  
    To overcome this sparse coverage issue we can make use of 
the special hardware performance monitors (HPM) designed 
into modern processors We have investigated making use of 
branch vector management provided by hardware TRACE 
Units, such as those of the Analog Devices family of Blackfin 
processors. Here, a hardware stack automatically captures 
program code flow vectoring information. If this information 
is cross referenced to the original source code during post pro-
cessing, there is no need to record sparse general PC infor-
mation.  
    The Blackfin family is designed for real-time DSP opera-
tions and includes features that can be co-opted to further re-



duce monitoring overhead. The “Loop Compression” option 
prevents the logging of recent duplicate entries onto the hard-
ware stack, reducing the amount of branch vector data logging 
that is generated for (i) loops calling leaf-functions, or (ii) the 
logging generated for the double nested loops common in al-
gorithms used in embedded systems for DSP-oriented applica-
tions.   In addition, (iii) the TRACE unit also does not log any 
program counter discontinuities associated with zero-overhead 
(hardware) loops which an optimizing compiler will introduce 
to replace standard software loop operations. On the Blackfin, 
the combination of the two available zero- overhead hardware 
loop units with 2-level loop compression offers the potential 
for considerable performance gains.  
    Fig. 2 shows how this TRACE unit can be used within a 
tool that provides the same detailed coverage information as 
found with software instrumentation but with minimal per-
formance degradation. However, for the tool to be useful with-
in a test driven development (TDD) process, reports must be 
generated from the extensive full coverage details in an expe-
dient manner. Again, extending the ideas found to improve the 
speed of software instrumentation, we propose adding control 
features (1) to identify, in real time, the code (functions) cur-
rently under test; (2) to generate code coverage reports for 
only those functions that are currently in the scope of interest 
of the developer; and (3) to lower the performance impact of 
the tool by automatically activating the HCM for only those 
functions currently of interest 
 

III. HARDWARE-BASED CODE COVERAGE IMPLEMENTATION 

The new Rapid Efficient Code COVERage tool, E-
RECCOVER, was added to the Source-Forge UnitTest++ test-
ing framework initially targeting the Blackfin processor for its 
distinct feature of a hardware TRACE unit which stores the 
program instruction branched to and the memory address of 
the branch instruction which caused the discontinuity. Figure 
2 provides the block diagram of a hardware assisted code cov-
erage tool using the branch vector TRACE hardware. The 
original subroutines and functions are left unmodified, except 
for the system main() where the TRACE buffer hardware is 
configured. When the TRACE hardware buffer gets full, the 
processor will generate a TRACE exception handled by an 
exception service routine (ESR). The contents of the TRACE 
buffer will be moved to a software holding array. Otherwise, 
the ESR will pass the unhandled exception to the generic sys-
tem exception handler. Because the custom ESR handler is 
written in optimized Blackfin assembly, it occupies only a few 
hundred bytes of code space, and can handle transferring the 
TRACE buffer contents very efficiently.  
    Several components are required to generate meaningful 
output from the list of branch vectors. Because the physical 
code memory location may be moved around on each compi-
lation, a code mapping script must be run every time the pro-
ject is compiled. This source mapping table (SMT) was origi-
nally generated via an exposed VisualDSP++ IDE Automation 
Interface based on Microsoft’s Component Object Model 
(COM) technology, accessed through a COM connection be-

tween the EmbeddedUnit GUI and VDSP. However, this ap-
proach took roughly 60 seconds for every 10k lines of code 
(LOC), too slow for repeatedly running the tests required for a 
TDD approach. This bottleneck was overcome by using in-
termediate debug output files generated during code compila-
tion which were passed through an elfdump tool to create two 
intermediate DWARF-format files source code/memory ad-
dress mapping and the program symbol table, which Embed-
dedUnit used to generate the SMT in less than one second for 
10 KLOC. 
 
A. Expected performance analysis 
    As with other instrumentation approaches, the performance 
impact of the proposed hardware assisted test coverage tool 
can be expected to be very algorithm dependent. However, an 
estimate of the expected average performance impact of the 
tool can be determined by making a number of simple as-
sumptions. (i) L lines of high-level code are executed, each 
requiring N processor clock cycles taking a time T = N L cy-
cles to execute; (ii) a fraction k of the code is instrumented for 
hardware assisted code coverage; (iii) a branch occurs every B 
lines of the high level language; (iv) the TRACE unit activates 
an exception service routine only when the branch vector 
hardware stack of H entries is full; (v) the disruption of a pro-
cessor pipeline of depth P due to entry into and exit from the 
exception service routine results in a 2P cycle overhead; (vi) 
the exception routine to read the branch vector pairs (source 
and destination) from the TRACE unit and store them to local 
memory for later recovery requires 2 * H * M cycles  where 
M is number of cycles to perform a memory access; and (vii) 
R registers must be saved and recovered during the exception 
service routine for a performance cost of 2 * R * M cycles. 
This leads to a “conservative” estimate of the performance 
impact of using hardware assisted code coverage is 
 

PerformanceImpact = InstrumentationOverhead/T 
= kL(2P + 2(H + R)M)/(BHNL) 

 
  A worse case practical estimate of the overhead can be ob-
tained by assuming 100% code coverage requirement (k = 1), 
with each high-language statement requiring 5 to 30 cycles to 
execute (average N = 8) and branches occurring on average 
every B = 5 high-level statements.  For the ADSP-BF5XX 
family, we would expect an instruction pipeline of depth P = 
10, and R = 7 registers saved. The hardware TRACE stack of 
depth H = 16 entries requires an average of 2 * M = 8 cycles 
for each branch vector pair stored to internal memory for later 
analysis. Thus the expected worse-case theoretical perfor-
mance impact of the proposed fast full code coverage tool is 
approximately 30%.  In practice, we would expect a signifi-
cantly lower performance impact as we have not taken the 
HCM loop compression capabilities into account during the 
analysis, leading to an overhead of  (2P + 2 (H + R) M) / H or 
approximately 10 – 12 cycles for each branch recorded,  lower 
overhead than what is achievable for software instrumentation 
approaches. 



B.  Actual performance impact 

In a test, the execution time (cycle count) of an un-
instrumented function DemoFunction() was determined. This 
consisted of a quadruple nested loop with the inner loop con-
ditionally calling a leaf function WriteAudioPort() that writes 
to a device (audio peripheral) along an external processor bus. 
This function models characteristics found in many DSP algo-
rithms. Given the large number of branches occurring in this 
over simplified function, the overall performance impact of 
code coverage monitoring will be exaggerated; but the true 
performance impact / branch vector generated ratio becomes 
straight forward to determine. 
     Our EmbeddedUnit testing framework allows determina-
tion of the non-instrumented time for the DemoFunction(). 
Extensions to the framework allowed activating and deactivat-
ing the code coverage hardware via CODE_TRACE() macros, 
with extended features to permit the evaluation using  standard 
TRACE hardware features and then activating the special loop 
compression activated  features.  
     The DemoFunction() had an inner loop causing three 
jumps (conditional evaluation, jump into, and out of 
WriteAudioPort()). With trip counts for the 4 loops of 14, 16, 
18, and 20, the expected number of branch vectors generated 
was around 242,000. However, the results from running the 
program showed only 167,000 branches occurring. Detailed 
inspection of the machine code showed that the optimizing 
compiler was able to reduce the C++ inner loop conditional 
statements into single conditionally-executed machine level 
instructions (if-condition-do-assignment). These statements 
reduce to no-operation instructions if the condition is not met; 
avoiding any pipeline disruptions and associated performance 
degradation – a typical example of the algorithm and proces-
sor dependence associated with program flow. 
      With a baseline non-instrumented code execution of 4.95 
million cycles, the overhead associated with recording each 
branch is about 17 cycles per branch vector, compared to the 
10 – 12 cycles per vector predicted in the previous section. 
Activating the loop compression option caused a function call 
to WriteAudioPort() in the inner (zero-overhead hardware-
controlled) loops to be logged only once for every iteration of 
the outer loop. With the 2 Blackfin hardware loop registers 
handling two inner loops and the two outer loops handled by 
software, the branch count was calculated from the assembly 
code generated by the compiler as 14 * 16 + 18 * 20 = 808; 
which was confirmed by the EmbeddedUnit measurements.  
     The loop compression option reduces the number of branch 
vectors recorded, but not the overhead for documenting an 
individual branch vector; a cost that remains constant. With 
this example involving essentially continual branching, the 
performance impact for full code coverage is 56% when using 
the un-optimized E-RECCOVER tool settings. This reduces to 
an overhead of 0.25% after activating the TRACE unit’s loop 
compression option to cause the removal of over 99% of the 
logging information recognized as being redundant. This per-
formance hit is an order of magnitude smaller than reported by 
Shye et al. [14] sampling the Itanium BVB every 10 million 

clock cycles while retaining the 100% code coverage available 
from software instrumentation. 
 

IV. TOOL 2: FPGA AGILE TEST SUPPORT, ATS, CO-PROCESSOR  

   Combining in-house and third party threads may be needed 
in an embedded application to meet changing market require-
ments. In an Enterprise environment, software instrumentation 
of the threads is one approach used to determine whether the 
correct locks (mutexes) are held when accessing shared 
memory. However, positives and negatives into data race 
analysis and may require more memory than readily available 
in a real-time embedded development environment. 
    Many modern embedded processors and micro-controllers 
provide low-level developer debugging support through 
breakpoints activated by on-chip hardware bus-watch units 
that monitor (snoop) bus activity. Huang et al. [9] proposed 
co-opting these units to produce a hardware-assisted, low-
overhead and low-memory requirement E-RACE tool capable 
of inserting data-race tests upon recognizing accesses to 
shared memory. They indicated that such hardware-supported 
data-race analysis approaches would be particularly useful 
when the original (legacy or third party) thread source code 
was not readily available for implementing software instru-
mented shared memory access detection. The authors further 
suggested that such a low-overhead tool would also prove 
useful when developing new threads via an Embedded-Agile 
TDD approach. 
    Huang et al. [9] evaluated the E-RACE tool concept using 
the Analog Devices family of Blackfin (ADSP-BF5XX) pro-
cessors. The BF5XX debug instruction-bus watch unit could 
be programmed to throw exception events on recognizing spe-
cific instruction-bus activity. The associated exception service 
routine (eXSR) was then co-opted to insert a low overhead 
hardware-supported test to determine whether a monitored 
thread unblocked in time to meet desired hardware or software 
hard time constraints. However the BF5XX data-bus watch 
unit threw emulation events upon recognizing shared data 
memory accesses. Portions of the associated emulation service 
routine (ESR) run on the development workstation making 
this approach 10,000+ times less time efficient in inserting 
tests than via an eXSR. This voided many of the potential ad-
vantages of using a hardware-assisted tool to support an Ac-
ceptance Test Driven Development (A-TDD) Embedded-
Agile approach to developing threads without hidden shared 
memory data races. Smith et al. [10] suggested that problems 
associated with the different capabilities of the existing data-
watch and instruction-watch units could be overcome by the 
development of an external FPGA-based ATS coprocessor. 
This approach, shown schematically in Fig. 3, is suitable for 
any embedded system, and would use an interrupt to inform 
the SUT that the co-processor had recognized the bus activity 
associated with a particular thread accessing shared memory. 
There would be no overhead when the ATS co-processor was 
simply monitoring bus activity, unlike a software instrumenta-
tion approach. 
 



 
A.  Identification of ATS Requirements 
   Development of the ATS coprocessor was undertaken with 
two results in mind.  The first was to meet the identified need 
to extend an automated testing framework to better support. 
Embedded-Agile development.  The second was to provide a 
test bench to identify potential Agile development approaches 
to develop a coprocessor.  The assumption here was that the 
final real time performance of a system using software-based 
DSP algorithms was insufficient for customer needs. This 
would necessitate that existing parts of the algorithm be 
moved over to an FPGA-based DSP coprocessor to enhance 
performance as shown schematically in Fig. 4.   
    We classify this as an FPGA-Agile development approach 
as tests for the existing software already exist, and are there-
fore available to monitor the development, and final perfor-
mance of the FPGA DSP co-processor.  To explore potential 
generalizable approaches to Embedded-Agile XP development 
of FPGA products we deliberately started development of the 
Test Support (ATS) co-processor using the Agile technique of 
using customer wish list items (WLx) as an approach to ex-
pressing requirements that identify the desired hardware-based 
ATS FPGA co-processor characteristics. We then take a cus-
tomer identified high priority item from the wish-list and then 
attempt to meet the spirit of a number of Agile extreme pro-
gramming (XP) development concepts. Each development 
stage (Sprint) should start with the definition of tests that must 
be met to satisfy the identified wish list requirement. Just 
enough code should then be written to satisfy those tests. The 
Sprint end result should be a minimal viable product (MVP) 
with capabilities that satisfy the tests derived from the re-
quirements. The minimum viable product concept delineates a 
difference between Agile XP and standard Embedded or 
FPGA development approaches. The MVP is not a prototype 
whose development is considered wasteful in both time and 
other resources in an Agile concept. The MVP is a fully-
functional unit of the final product written to a high standard 

with the intention that it can be retained and released onto the 
market without the cost of modification. 
— WL1: The ATS will contain watch unit blocks capable of 
recognizing specific address and data bus activities/ 
— WL2: Each watch unit would contain a (watchdog) timer 
which, paired with an instruction bus, could watch activities to 
evaluate hard-time constraints of a particular thread.  
— WL3: A pair of bus-watch unit registers would provide the 
capability to efficiently watch a range of memory locations 
shared across new and legacy threads. 
 — WL4: On identifying a watch condition match, the ATS 
issues an interrupt to the processor to cause a test insertion.  
— WL5: A separate communication channel exists between 
the processor and the ATS co-processor to allow indication of 
which watch units. The ATS must be temporarily deactivated 
to allow the interrupted watched condition to complete.  
— WL6: A specified number of particular bus activities must 
occur before the ATS again communicates the recognition of 
the watched activity 
 
B.  Planned Co-design Embedded-Agile Migration Stages 
   We propose that there be several migration stages (MS) to 
provide the maximum opportunities to meet the Agile XP re-
quirement of maintaining a minimum viable product (MVP) 
during Co-design Embedded-Agile development stages.  
MS1: Previous tests have been used to validate the existing 
DSP blocks in Fig. 4, and indicate that software components 
DSP4 and DSP5 need to be parallelized, migrated to a copro-
cessor, to meet the embedded system’s real-time requirements. 
MS2: The functionality of each proposed FPGA component 
block, M-DSPx, required by a DSPx software component is 
mocked in software and validated using the existing tests. 
Mocking will suggest how each DSPx block might be config-
ured inside the FPGA co-processor. If the mocked code is 
reconfigured as RISC-like operations (ROPs) then the number 
of parallel ROPs possible within a “reasonable” FPGA archi-
tecture provides an early proxy to whether the required speed 
improvement will be achieved following migration. 
MS3/MS4: The functionality of the SPI-supported test encod-
er and interpreter required for the specific application is iden-
tified with the mocking validated with the existing tests. In 
MS3 the encoder and Master SPI interface together with the 
interpreter and SPI slave interface are all mocked in software. 
Then, MS4, the mocked encoder and decoder are interfaced 
with the processor’s actual SPI hardware working in echo 
mode, i.e. the SPI Master-out slave-in (MOSI) line tied back 
to the Master-in slave-out (MISO) line. These combined soft-
ware and hardware mocking stages are validated using the 
existing tests.MS5: By following an Agile TDD process,  
the coding of the mocked SPI unit and interpreter will have 
been preceded by the development of additional unit tests. 
These tests can be used to validate the result of migrating. the 
mocked SPI slave unit, and then the mocked test interpreter, 
onto the actual FPGA MS6: The DSP algorithm blocks identi-
fied in MS1 are then migrated. Black box unit and acceptance 
testing will be possible through the SPI slave unit and test 
interpreter now functioning on the FPGA 

 

Fig. 3. Schematic of the operation of an FPGA-based ATS 
co-processor. Tests are needed for new and legacy code to 
ensure that the shared memory accesses only occur when 
threads own the proper MUTEX values. Without the code 
re-compilation needed to support software instrumentation, 
the ATS co-processor’s watch units (WUs) perform low-
overhead snoop operations on the processor’s data buses to 
identify shared memory access and enabling the insertion of 
tests to recognize potential race conditions. 



 

Fig. 4: Schematic of TDD migration (hardware-refactoring) of an existing (tested) DSP algorithm from a C++ implementation to 
an FPGA co-processor. The Hardware-Software refactoring process is supported at unit- and acceptance-test levels through tests 
developed during earlier XPI stages. The DSP4 block has already been migrated to the FPGA as M-DSP4, while DSP5 has been 
planned for migration as PM-DSP5. The SPI-supported test encoder and interpreter allow separation of the validation of the co-
processor functionality from the processor dependent stage of integrating the co-processor onto the embedded system busses. 
 
MS7: With the functionality of the FPGA co-processor estab-
lished through the SPImocked address, data and control bus 
operations, the co-processor can then be connected to the ac-
tual embedded system buses. Tests for this stage can still con-
veniently involve use of the SPI test interpreter when appro-
priate. Details of this final processor dependent stage is be-
yond the scope of the current article but has been outlined for 
the Analog Devices BF5XX family. 
 

V. RESULTS FROM ATS COPROCESSOR DEVELOPMENT 

Agile processes have been widely used in software develop-
ment, and recently migrated to embedded systems. We ex-
plored the adaptation and adoption of Agile processes to ad-
dress the aspect of reliable development of FPGA-based co-
processors. We explored an initial Hardware-Software Co-
Design Embedded-Agile XP process based on the assumption 
that an existing C++ program must be migrated onto an 
FPGA-based co-processor to improve real time performance, 
or onto an FPGA-based soft processor to meet cost or power.   
   These processes were demonstrated through the develop-
ment of an Agile Test Support (ATS) co-processor. A Test-
Encoder-Interpreter and a Result-Encoder-Interpreter interface 
was used to achieve an automated testing framework. Alt-
hough the ATS development was successful using this ap-
proach, our experiments indicated that it was inefficient to 
attempt to directly validate the existing C++ DSP algorithms 
ported on a one-to-one basis to a FPGA coprocessor from the 
CPU side.  A far better approach would be to migrate the ex-
isting tests into a FPGA Agile testing framework. The original 
embedded system tests can then be used as acceptance tests 
for the integrated co-processor.  

VI. CONCLUSION 

In this paper, we having considered two tools to improve a 
testing framework’s support for Embedded-Agile development 
by co-opting, and extending, on-chip hardware performance 
monitors to support faster full code test coverage  
 

analysis and low-overhead live black-box and white-box 
testing using a FPGA-based test insertion co-processor.  
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