
WATERS Industrial Challenge 2017
Arne Hamann, Dakshina Dasari, Simon Kramer, Michael Pressler, Falk Wurst and Dirk Ziegenbein

Corporate Research, Robert Bosch GmbH, Germany
Email: {arne.hamann,dakshina.dasari,simon.kramer2,michael.pressler,falk.wurst,dirk.ziegenbein}@de.bosch.com

I. INTRODUCTION

Automotive embedded applications like the engine management
system are composed of multiple functional components that are
tightly coupled via numerous communication dependencies and
intensive data sharing, while also having real-time requirements.
In order to cope with complexity, especially in multi-core
settings, various communication semantics are used to ensure
data consistency and temporal determinism along functional
cause-effect chains. These communication semantics set rules on
how and when data is communicated across functions. While
“implicit communication” proposed by AUTOSAR targets data
consistency, Logical Execution Time (LET) has been proposed to
solve the problem of temporal non-determinism by decoupling
computation and communication, especially so when the software
is deployed across multiple processors. During the design process
it is necessary to evaluate the impact of these semantics on the
real-time properties of the system.

A. The Challenge
The challenge extends the previous one [1] while mainly

focussing on a qualitative and quantitative comparison of the
three different semantics: direct, implicit and LET communication,
described in Section II. Given an Amalthea meta-model of an
engine management system (EMS), with predefined task and
label mappings, the solution should

1) propose and demonstrate how implicit and LET communica-
tion may be realized, e.g. by adding additional runnables
and/or tasks performing copy operations.

2) compute the overheads in terms of extra cycles used for
memory access and also in terms of extra memory required
due to the proposed implementation.

3) compute end-to-end latencies (age/reaction latency) of the
event chains (best, average and worst case). The solution
should be able to handle multi-rate effect chains consisting
of tasks with harmonic and non-harmonic periods.

4) propose a different label mapping that could possibly reduce
the memory access overheads.

5) factor in the effects of contention on the interconnect in
the memory access overhead and show the impacts on
end-to-end latencies.

It is very important to clearly state the assumptions made in
the implementation and during the overhead calculations. Also
solutions that capture the overall system behaviour (under average,
best and worst case conditions) using simulation based approaches
are encouraged.

B. Model description
We use the AMALTHEA [2] meta-model for describing

the engine management system. AMALTHEA provides model
elements to express event chains, tasks models, constraints and

the hardware platform. The challenge is based on the model
of an engine management system provided in the context of
the previous industrial challenge [3], [1]. The earlier model
is augmented to specify the frequency of label accesses from
each runnable. The platform consists of 4 cores, running at 200
MHz, each with a local scratchpad program and data memory
and communicate with each other and the global DRAM via
a cross-bar interconnection network. The access latencies to
local and remote memories are specified in the challenge model.
Although the crossbar provides a point-to-point communication
channel between each core and memory, there may be contention
when multiple cores access any of the memories simultaneously.
This contention at the memory ports is resolved using a FIFO
arbitration. The application consists of 1250 runnables grouped
into 21 tasks/ISRs which communicate via 10000 labels. Constant
calibration data, i.e. labels that are only read but never written,
is mapped to the global RAM. Variables, i.e. labels that are
written by a single task and potentially read by multiple tasks,
are mapped to the local memory of the core hosting the writer
task. Note that the underlying platform does not support data
caching for the data mapped into the global RAM. Additionally
all periodic tasks are released synchronously, whereas the angle
synchronous task and all ISRs are asynchronously released.

II. BACKGROUND CONCEPTS

A. Explicit or Direct Communication

(a) (b)

Fig. 1: a) Direct access: task performs read and writes on a global
variable during its execution b) Example showing how task A uses 2
different values at different points in execution

This semantic, often also called direct access, allows unrestricted
access to shared variables (labels) across tasks. As seen in
Figure 1a, the task works on the global variable of the label.
This may work for labels which are strictly read-only, but with
labels which may be overwritten, data inconsistency may result.
Interleaving of task activations will result in different values
of the data. In a single core setting, a simple scenario is one
in which a preempting task changes a shared value and so the
preempted tasks works on two different values at two different
points in time, leading to inconsistencies as seen in Figure 1b.

B. Implicit Communication
This semantic, proposed by AUTOSAR, is primarily focused

towards maintaining data consistency to avoid the pitfalls of
explicit communication. It essentially follows a read-execute-write

i



paradigm – Implicit communication mandates that the task always
makes local copies of the shared data it needs at the beginning of
its execution, works on the local copies and writes the data back
at the end of its execution. This ensures that the task works
on the same copy throughout its execution, and also preserves
consistent state of the data.

(a) Implicit communication (b) LET communication

Fig. 2: In the implicit case, tasks communicate ate the task boundaries,
with LET at activation boundaries

From the access latency perspective, all the variables that
are read during task execution will have to be pre-fetched into
local memory from its source and then the task may execute by
referencing readily available local copies, hence not incurring
the cost of remote accesses multiple times. The access latency
in case of implicit communication is therefore dependent on
multiple factors including, the cost of access to remote and local
memory, number of accesses to the label during one execution
to the local memory, and the period/activation rate of the task.
However on the memory storage front, more local storage is
required, since for every task which accesses the label, an extra
local copy is required.

C. Logical Execution Time Model

Logical Execution Time (LET) is a real-time programming
concept which ensures temporal determinism by decoupling com-
putation and communication. The problem with an unconstrained
communication method, i.e, allowing tasks to read and write
arbitrarily is non-determinism due to ”execution jitter”. The
result is highly dependent on possible interferences of other
tasks executing within a tasks activation interval (say from its
release to the end of its period). The effects of this jitter becomes
more prominent in event chains, leading to large variations in
end-to-end delays. With the LET model, tasks always read data
at the beginning of the activation interval and write data at the
end of the activation interval. As with implicit communication,
LET requires that a local copy is available for each variable
accessed by a task. Using LET, the observable temporal behavior
of a task is independent from its physical execution. That is
irrespective of the exact time a task executes within its execution
interval, the result will be always available only at the end of its
execution interval. With LET, the end-to-end latencies in case of
synchronous stimuli is always equal the sum of the periods of the
tasks involved in the chain. However, with asynchronous stimuli
it may happen that each task in the effect chain executes as early
as possible in its activation window but the data arrives just after
it begins execution (meaning it is operating on an older value of
the data). Thus the newer data is consumed only one time period
later. The same scenario could occur with every pair of tasks in
the chain. Eventually, the worst case latency in the case of such
asynchronous arrivals is twice the sum of the periods of all the
tasks in the chain. LET thus leads to longer latencies in event
chains. But on the other hand, with LET, there is no need for
complex synchronization mechanisms to handle race conditions
or priority inversions, given its well-defined semantics.

D. Intra-task communication
Runnables within a task may communicate with each other in

two different ways. With forward communication, the producer
runnable completes before the consumer runnable and hence
there is no delay in getting the latest data by the consumer and
communication is therefore fast. With backward communication
however, the consumer runnable executes before the consumer,
and thus there is a delay of one period in this case to receive the
latest data.

E. Event Chains
An event chain, also called effect chain or signal flow, is an

abstraction of a data flow through a system. Typically an EMS
has multiple event chains wherein data is sensed by the sensor
nodes, passed on to control functions which act on this data and
finally the output is used to configure the actuation functions
to perform the desired action. Thus these event chains are a
sequence of successive stimulus-response segments, where the
response of one segment is the stimulus of the next segment.
Each of these event chains is associated with an end-to-end
latency requirement which is specified via one of the two delay
semantics: an Age or Reaction latency constraint.

1. Reaction Latency Constraint
Reaction latency denotes the time between the occurrence of

the response to a specific stimulus. In other words, it denotes the
time lapsed between a specific (sensor) input value or signal to
a corresponding (actuator) output value, specifying how long
a value or signal needs from one end to the other. A reaction
latency constraint of k time units to a particular stimulus implies
that the response should occur no later than k time units after
that stimulus.

2. Age Latency Constraint
For the age latency, the freshness of the data producing the

response is important and hence the focus is from the response
perspective rather than from the stimulus perspective. In other
words, this is the maximum time a specific output (actuator)
value is available from a corresponding (sensor) input value or
signal. This also equals the validity of a specific value or signal
before a new value arrives. A (max) age constraint of ”k” time
units for a cause-effect chain mandates that for an occurrence of
a response event, the corresponding input data is not older than
”k” time units [4].

REFERENCES

[1] A. Hamann, D. Ziegenbein, S. Kramer, and M. Lukasiewycz, “Demonstration
of the fmtv 2016 timing verification challenge,” 2016 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), vol. 00, p. 1,
2016.

[2] AMALTHEA, “An open platform project for embedded multicore systems.”
[Online]. Available: http://www.amalthea-project.org

[3] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive
benchmarks for free,” in 6th International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems, 2015.

[4] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “Synthesizing
job-level dependencies for automotive multi-rate effect chains,” in Proceedings
of the 22th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA).

ii


