
Combined Data Transfer Response Time and
Mapping Exploration in MPSoCs

Alexander Diewald, Simon Barner
Model-based Systems Engineering

fortiss GmbH
80805 Munich, Germany

lastname@fortiss.org

Selma Saidi
Institute of Embedded Systems

Hamburg University of Technology
21073 Hamburg, Germany

selma.saidi@tuhh.de

Abstract—Recent embedded applications such as Autonomous
Driver Assistance Systems (ADAS) require large computational
resources that increase the need for HW accelerators, e.g., in
system-on-chip-based platforms. Synthesising optimal task/data
mappings and schedules for such platforms becomes increasingly
challenging, even more in safety-critical contexts. For designing
real-time heterogeneous systems, response time computation
and the resolution of task mapping problems are required as
demanded in the WATERS 2019 challenge. Our contribution to
address the challenge is to extend a design space exploration
(DSE) formulation of mapping applications on MPSoCs architec-
tures to consider DMA-based data (pre)-fetching. The approach
is performed in two steps. First, we determine task mappings
to a heterogeneous MPSoC platform using a multi-objective
evolutionary algorithm (MOEA)-based DSE. In order to check
the feasibility of an allocation, and to rate its quality, we use a
SMT solver to construct schedules whose latency is close to the
achievable minimum. Our task response time analysis considers
the effects of memory access times and DMAs to supply the SMT
scheduler with data fetching latencies. The MOEA-DSE, the SMT
scheduler, and the response time calculation are integrated into
the AutoFOCUS 3 tool that has been extended with an importer
for the AMALTHEA model that specifies the challenge use case.

Index Terms—Real-time systems, Design optimization, Model-
driven development

I. INTRODUCTION AND PROBLEM STATEMENT

Over the last decades, embedded system applications and
platforms became more complex, resulting in additional hard-
ware (HW) accelerators in typical commercial off-the-shelf
(COTS) processors such as system-on-chips. However, de-
spite the high amount of available computation capabilities,
data communication often constitutes the limiting factor for
performance where the required data needs to be transferred
timely between remote off-chip memories and MPSoCs on-
chip memories. As a result, data transfers become an important
aspect in safety-critical systems besides the proper partitioning
of tasks. In the WATERS 2019 challenge, a shared-memory-
based heterogeneous system is considered where the separa-
tion of data in the memory, and its access times are relevant
for avoiding temporal overruns and for optimizing the system
schedule. To optimize such a system, we use a DSE that
combines MOEA with a SMT solver to investigate the effects

This research has received funding from the German Federal Ministry of
Education and Research (BMBF; grant agreement No 01IS16025F) in the
ARAMiS II project (www.aramis2.de).

B1

M1

ShMem

T2

T1

T3
CPU2

CPU1

GPU

DMA

1

2

Fig. 1: Write operation of Task T1 for DMA-only communi-
cation: 1) Instruct DMA; 2) DMA write operation.

of the needed synchronization between computations and data
communications onto the system’s performance. .

DSE has a long history in embedded system design, e.g.,
on the system-level [1], [2]. These techniques were connected
to Model-Driven Engineering (MDE), e.g., in [3], where a
cross-domain first-order constraint language is constructed to
describe exploration problems. Similar approaches are found
in [4], [5], where a constraint solver is combined with sim-
ulated annealing to produce optimized system designs, e.g.,
task-to-core allocations. On the device-level, Benini et al. [6]
present a simulation-based design-space exploration that is
coupled with a SystemC model.

In our proposed approach, we consider for every task an
AER model of execution that includes an Aquisition (read)
phase required to copy data from an external memory location,
typically a DRAM, to a local CPU/GPU memory location, an
Execution phase where task kernels are executed on the CPU
or GPU, and a Restitution phase where data is written back to
main memory. In addition to the assumptions of the challenge,
we suppose that all memory access are exclusively handled by
DMA transfers (see Sec. II-C for details). The communication
scheme illustrated in Fig. 1 is equivalent to read and write
operations where a DMA is first instructed before it reserves
the bus for the actual transfer.

DMAs are often used in MPSoCs as HW support for
transferring data. They offer asynchronous transfer operations
that relieve the main processor from explicitly managing them.
Otherwise, the processor would be blocked during this time,
but idling most of it, waiting for the memory operations to
complete. Instead, whenever a processor needs data, it issues
a transfer request to the DMA that then manages the copy
operation during which the processor can be allocated to other
tasks to be executed. When the transfer is completed, the



DMA notifies the main processor that can then resume the
processing task that issued it. Computations and data transfers
can therefore be performed in parallel in a pipelined execution.
This technique is extensively used for data prefetching where
before performing a task, the processor can issue a transfer
request to the DMA to fetch data required by the next task
to be processed. Prefetching techniques are used to hide the
transfer latency and therefore optimize the overall performance
of the system.

In our contribution, we focus on the two following effects:
• Synchronization between computation and data transfers,

especially the latencies introduced by communication.
When offloading a task to a GPU accelerator, additional
data transfers can be compensated by shorter computation
times to optimize system performance. To optimize the
overall performance, we jointly explore task mappings
and data transfers strategies that are strongly coupled via
common communication resources.

• Increasing system performance by using prefetching tech-
niques for schedule construction. Prefetching data us-
ing DMAs allows exploiting parallelism more efficiently
since the main processor cores do not need to idle while
getting data from a slow memory. Instead, the cores
can access the data from a closer and faster memory to
which it has been transferred asynchronously by a DMA
engine. Fig. 2a and 2b illustrate the benefits of prefetching
(reduction of overall latency).

II. APPROACH

We address both tasks of the challenge by combin-
ing a MDE tool, its MOEA-based DSE algorithm [7], an
SMT scheduling synthesis formalization [8], and a temporal
analysis specialized on DMA-based shared memory plat-
forms [9]. Based on an imported version of the provided
AMALTHEA [10] challenge model1, the DSE is used to map
tasks to CPU cores or the GPU, and and data transfers to the
DMA unit. For each candidate mapping, the SMT scheduler
and the temporal analysis are invoked to estimate the resulting
communication latencies.

A. System Modelling

Our approach builds on MDE to represent the DSE’s input
models and to encode the resulting solution models. We
use the infrastructure as well as the modelling viewpoints
and metamodels of the open source AutoFOCUS 3 (AF3)2

tool [11] (e.g., logical and technical viewpoint including a
hierarchical platform metamodel [12]).

We created an importer that translates the AMALTHEA
runnables, tasks, labels, label accesses, as well as the HW
architecture and timing information, e.g., periods, worst-case
execution times (WCETs), to the corresponding AF3 artefacts.

AutoFOCUS 3 relies on logical component and task net-
works whose entities communicate by means of typed ports

1https://www.ecrts.org/forum/viewtopic.php?f=43&t=126&sid=
8cc2f7c06f29e09b25476b714d191b3d

2https://af3.fortiss.org/

(a) Schedule without prefetching.

(b) Schedule with prefetching.

Fig. 2: Temporal effect of data prefetching.

that are connected by channels/signals, to provide platform-
independent and implementation-specific descriptions of a
system’s architecture, respectively. In contrast to AF3’s more
system-level oriented view, AMALTHEA puts more emphasis
on the device-level and models the communication of its
runnables and tasks by means of shared variables. This is
considered when AMALTHEA runnables are converted into
AF3 components, AMALTHEA tasks into AF3 tasks, and
label (accesses) into ports and their types respectively. Data-
dependencies between AMALTHEA tasks whose runnables
write/read the same labels are encoded as AF3 logical channels
and signals between AF3 components and tasks, respectively.
In order to “mimic” global AMALTHEA variables, our im-
porter converts them into separate AF3 components (tasks)
that are connected to components (tasks) that read from or
write to them.

Moreover, the mapping of runnables to tasks is transformed
into an AF3 mapping table. In order to account for the
AER scheme, the importer creates dedicated AF3 read and
write tasks for each task present in the AMALTHEA model.
By mapping these tasks directly to the CPU cores or to a
DMA unit, different memory access patterns can be explored
(e.g., DMA-based data-prefetching in parallel to the functional
computation tasks).

Since the AMALTHEA HW metamodel allows to arbitrarily
nest structural elements, it is not possible to define a generic
approach that automatically maps instances to the hierarchical
AP3 platform metamodel that supports a 4-tier architecture
consisting of clusters, nodes (ECUs), tiles (processors), and
cores [12]. Hence, we opted to use the manually crafted
platform model shown in Fig. 3 that is composed of sev-
eral execution units (red), busses (blue) and a memory unit
(RAM, green). The execution units consist of four A57 cores
(top-left), two Denver cores (bottom-left), two DMA “cores”
(middle), as well as a GP10b GPU “core” The busses are
annotated with bandwidth information that is derived from
the AMALTHEA model. For the read and write tasks, two



C0_Cortex_A57

GP10B

NW_A57_READ

NW_Denver_WRITE

NW_A57_WRITE

RAM
C1_Denver

C1_Cortex_A57

C0_Denver

C2_Cortex_A57

NW_Denver_READ

DMA_WRITE

DMA_READ

C3_Cortex_A57

NW_GP10B

Fig. 3: Handcrafted HW platform model (exported from AF3).

distinct DMA units have been modelled. While this does not
accurately model the Jetson TX 2 platform, this modelling
approach is tailored to our DSE algorithm in order to enforce
inter-core communication between read and write tasks.

B. DSE Interface and Overview

Our MOEA-based DSE [7] explores the allocation of
tasks to (heterogeneous) execution units at varying granularity
(CPUs, cores, ...) and considers constraints and objective
functions to rate the quality of candidate solutions. Constraints
and objectives are passed to the DSE as declarative DseML [3]
expressions via an exploration metamodel [13]. AF3’s DSE
perspective enables i) to define optimization problems in terms
of the aforementioned DseML using pattern-based editors, ii)
to launch and monitor the DSE execution, and iii) to export
the results of an exploration to the corresponding AF3 models.

Our DSE algorithm is configured for the challenge to first
allocate tasks to execution units (cores), then to generate the
required messages for inter-core communication, and finally
to schedule the tasks and messages on their resources.
• Allocation. The MOEA algorithm assigns tasks to exe-

cution units under the consideration of direct constraints
such as allocations to specific units or joint allocations
of tasks to specific execution units.

• Messages & Routing. First, the required messages are
calculated based on decisions taken in the task allocation
step. Then, the corresponding shortest-path routes along
the resources of the underlying platform are determined.

• Scheduling. Lastly, the aforementioned SMT scheduler
calculates the starting times of tasks and messages, re-
sulting into a strictly time-triggered schedule. It is called
repeatedly to approximate the minimal achievable latency
of the overall system by means of bisection.

All these steps are performed iteratively within an outer loop
governed by the MOEA algorithm such that solutions consist-
ing of the above encodings are optimized. This decomposition
has been chosen to combine the flexibility and performance of
MOEA algorithms for generic optimization problems with the
suitability of SMT solvers in solving combinatorial constraint
satisfaction problems such as scheduling. Moreover, a com-
plete unified problem formulation in either of these algorithms
would result in sub-optimal performance.

C. Assumptions and Limitations

In addition to the challenge specification, we make the
following assumptions to reduce the use case’s complexity.

Firstly, we suppose that all memory accesses are performed
by DMA requests, favouring solutions that benefit from data
prefetching. Here, we neglect interference effects on the la-
tency of the DMA data fetching. We also assume that the
bandwidth of the DMA accesses equals those of the GPU since
both would access the system RAM over the memory fabric.
Nevertheless, the DMAs connection to the fabric is established
over the system fabric (i.e., peripheral bus) whose interferences
are not considered. Secondly, we do not consider the different
task periods specified in the challenge model, but only a
reduced single-rate version in order to compensate scalability
issues of our current SMT scheduler implementation in the
multi-rate case. Thirdly, our scheduler does not support task
preemption. However, since the better part of long-running
tasks could not be preempted anyways since they are offloaded
to the GPU accelerator, we argue that the impact of this
assumption onto the resulting overall latency is limited.

III. DESIGN SPACE EXPLORATION

The dependencies between the involved input and output
artefacts drive our MOEA-based DSE, fostering configurabil-
ity w.r.t. the engineering task at hand and reusability of explo-
ration features. This architecture of the exploration framework
allows optimizing non-convex and multi-objective problems
where variable couplings are encoded by dependencies.

a) Decision Variables: In our approach, there exist two
major decision variables: the allocation of tasks to cores and
the starting time of tasks. In order to express allocations, we
define a selection vector ai whose rows correspond to the
execution unit to which a task τi shall be allocated. This vector
has a one entry in the row corresponding to the allocation
target, otherwise a zero. Furthermore, we optimize the starting
time tstart,i of each task in the SMT scheduler.

b) Objective function: It minimizes the overall latency
per core ei (here: ARM A57, Denver, GPU, DMA) to emulate
a race-to-idle approach for minimizing the energy consumption
by reducing wakeups and enabling lower power states:

min
∀ej∈E

max
∀τi∈T ej

(t
ej
end,i) (1)

where the set E is the set of cores, while T ei is the set of
tasks composed of the read, execute, write tasks allocated to
the execution unit ei (T is the set of all tasks).

A. Spatial Constraints

For the task mapping problem, we define a matrix A
constructed from DseML allocation constraints that represents
the allowed allocations of tasks to cores such that

Aalloc =


1 1 . . . 0
1 1 . . . 1
...

...
. . .

...
0 0 . . . 0

 , (2)



where tasks correspond to rows and tiles to columns. In the
challenge, the entries for CPU-only tasks are one for all A57
and Denver cores, and zero otherwise. The same holds for the
respective GPU-only and DMA read and write entries. Only
the Lane Detection, Location, and SFM tasks have entries for
the GPU “core” and the A57 and Denver cores. Consequently,

uTi Aallocai = 1, ∀τi ∈ T (3)

describes the allowed allocations that are already considered
in the mapping operators of the DSE that construct solution
candidates. The unit vector ui selects valid allocations from
the matrix Aalloc and ai is the allocation vector of a task τi
to an execution unit with index i.

Complementing the allocation constraints, a feasible solu-
tion contains only messages whose corresponding signals fulfil
the reachability constraint

∃
r∈R

r(fsend,a(mi)
Te, uTj frecv,a(mi)e),

∀mi ∈M,∀j ∈ 1, . . . ,R (4)

whereM is the set of exchanged signals, and R is the number
of receivers of a signal, and e is the vector of execution units.
The functions fsend,a(. . .) and frecv,a(. . .) extract the sender
allocation vector and the receiver allocation matrix, where each
column corresponds to a receiver task, respectively. Thus, the
function r(. . .) takes a sending and receiving resource of a
message mi as input and returns the routes connecting them.
Hence, equation 4 states that for each message, given an allo-
cation table, a route connecting the sender with its receivers
must exist. The constraint is implicitly considered by the DSE
when calculating routes using a shortest path algorithm. More
spatial constraints (e.g., safety-related separation constraints)
can be considered by the DSE, but the focus of this work is
on the integration of the SMT scheduler as well as the shared-
memory system type with DMA units.

B. Temporal Constraints

The SMT scheduler’s constraints are based on [8]. Here,
we focus on discussing the periodicity, causality, and non-
overlapping constraints for tasks, and provide a more com-
pact formulation for reasoning about prefetching techniques
and AER characteristics. Periodicity is also evaluated by the
outer MOEA-DSE optimization loop to propagate potential
constraint violations to the candidate construction logic for
the next iteration. The periodicity constraint is defined by

0 ≤ tend,i ≤ pi, ∀τi ∈ T (5a)
0 ≤ tstart,i ≤ pi, ∀τi ∈ T (5b)

such that each task τi must be started and finished within the
bounds established by the period constraints. Additionally,

tend,i = tstart,i + Cdur,i, ∀τi ∈ T (6)

must hold. The constraints 5b and 6 are implicitly handled
and we consider a task’s WCET as its duration Cdur,i. These
constraints can be easily extended to the multi-rate case if we
consider task instances instead of tasks and assign an instance

index, e.g., j to them. Furthermore, the bounds of the equations
5a and 5b have to be aligned by the j-th periods such that the
constraints become jpj ≤ . . . ≤ (j+1)pj , ∀j ∈ 0, . . . , J − 1.

Data dependencies between scheduled tasks constrain only
the SMT scheduler and can be expressed by

tend,j ≤ tstart,i, ∀j ∈ Tpred,i∀τi ∈ T (7)

where Tpred,i are the predecessor tasks of a task τi, tend,j
are the ending times of the predecessor tasks, and tstart,i the
starting times of the regarded task. Complementary, the non-
overlapping constraint

tend,j ≤ tstart,i,
∀τi ∈ {T |uTi Aallocai = 1 ∧ tstart,j ≤ tstart,i} (8)

must hold to avoid temporal resource conflicts on execution
units. Data transfers are represented by the acquire and resti-
tution tasks defined in the next section.

C. Schedule Optimization and Prefetching

For the schedule optimization, we are optimizing the starting
time of tasks to minimize the overall system schedule duration.
Since the SMT scheduler is embedded in a MOEA algorithm
that forms the main optimization loop, its runtime is critical for
the performance of the algorithm as a whole. Thus, we utilize
the fact that SMT-based solvers are very fast at detecting
infeasibilities and finding solution for constraint satisfaction
problems, whereas additional optimization is costly. Therefore,
we construct an additional constraint on the duration of the
system schedule that we pass to the SMT solver (Z3). Initially,
an upper bound is selected that is equivalent to the overall
schedule length if all tasks are scheduled onto a single core.
Starting from this bound, a binary search is performed that de-
creases or increases the duration bound based on the respective
feasible or unfeasible state reported by the solver (schedule
latency bisection). In case of a timeout (5 s), an already found
schedule is taken as the solution, or it is considered infeasible
by the MOEA optimization loop otherwise. The search is
stopped if the step size is smaller than 1% of the initially
calculated upper bound.

Now that the SMT scheduler optimizes the starting times of
all tasks, including all acquisition, execution, and restitution
tasks, prefetching mechanisms can be considered. Considering
the AER execution scheme, the relations

tacqend,i ≤ t
exe
start,i, ∀τi ∈ T exe, (9)

texeend,i ≤ tresstart,i, ∀τi ∈ T exe (10)

must hold, where tacq, texe, tres correspond to the acquire,
execute, and restitution tasks and T exe ⊂ T the set of
execution tasks. Combining this with equation 7, we can derive
that

tresend,j ≤ t
acq
start,i, ∀j ∈ Tpred,i∀τi ∈ T (11)

must hold. The times tacq and tres are the times required to
read data from and write data to the memory.



Localization

OS_Overhead

Lane_Detection

Detection

SFM

PRE_Loc

Lidar_

Plann

CAN_BUS_polling PRE_Detection... PRE_SFM...PRE_Lane... EKF DASM

C0_Cortex_A57

C1_Denver

C0_Denver

C1_Cortex_A57

C2_Cortex_A57

C3_Cortex_A57

GP10B

DMA_READ

DMA_WRITE

µs

Duration:
281.910 µs

Fig. 4: Solution: Gantt chart of task schedule with DMA-supported data pre-fetching (AF3 screenshot with additional labels).

C0_Cortex_A57

C1_Denver

C0_Denver

C1_Cortex_A57

C1_Cortex_A57

C3_Cortex_A57

GP10B Localization Detection

OS_Overhead

SFM

CAN_BUS_polling Lane_Detection
DASM

Plan

EKF

PRE_Localization... PRE_Lane...

PRE_SFM...

PRE_Detection...

Duration:
323.669 µs

µs

Lidar_Grabber

Fig. 5: Solution: Gantt chart of task schedule without data pre-fetching (AF3 screenshot with additional labels).

Using the notation of arrival times, i.e., the time a task could
be started independently of resource usage, we can define

tresend,j = tacqarr,i, ∀j ∈ Tpred,i∀τi ∈ T (12)

and thus derive

tarr,j = tstart,i + ε, ∀τi ∈ T , (13)

where ε is the parameter that is effectively minimized by the
solver. Since it is present for any task, the solver tries to max-
imize parallelism purely under consideration of constraints 7
and 8. In general, there would be a trade-off with the neglected
communication-induced latencies.

D. DMA-based Latencies
We start with a simplified version of the latency estimation

of DMA transfers defined in [14]. It depends on i) the
initialization overhead that is fix for every DMA request and
that defines the time required by the DMA controller to initiate
a transfer, ii) the size of the transferred data and operation
mode of the DMA such as the burst mode that is particularly
useful for large data transfers, and iii) the target memory
location where longer distances negatively affect the latency.

Let L+
i,dma denote the maximum time required for a DMA

request i to perform a transfer. It is defined by

L+
DMA,i(Gi) = I + L+

mem,i(Gi), (14)

where I is the DMA initialization overhead, Gi is the granular-
ity of transfers (i.e., number of packets composing the transfer)
and L+

mem,i is an upper bound on the latency of the target
memory location. In this work, we define

L+
mem,i(Gi) =

∑
resc,i∈r(aT

i e,resmem)

1

resBW
c,i

+ L+
intf(Gi,a

T
i e),

(15)

where resc,i are the communication resources traversed by a
route to the memory hosting the required data. resBW

c,i is the
bandwidth of these communication resources. Additionally,
L+
intf(Gi,a

T
i e) defines the maximum latency that a memory

access i may experience. Thus,

t
acq/res
end,j = t

acq/res
start,i +

size(t
acq/res
i )

Gi
· L+

DMA,i(Gi),

∀tacq/resi ∈ T acq/res

(16)

defines the duration of every acquisition and restitution task
that uses a DMA unit to fetch its data.

IV. EXPERIMENTAL RESULTS

Applying the DSE to the imported and slightly modified
challenge model, the exploration algorithm produced valid and
optimized schedules in three hours. Although the running time
of the algorithm is fairly long, the iterative nature and internal
operation allows retrieving valid solution already after the first
iteration. Here, the SMT scheduler is the dominating factor in
the optimization. Reducing the timeout of the SMT call, or
lowering the granularity of the outer binary search (termination
criterion) at the expense of accuracy of the identified schedule
promises to reduce the needed time. For the MOEA algorithm,
we have chosen a population size of 100 (α) and an offspring
size of 20 individuals (µ) using elitism (fewer parent than
offspring individuals) and a crossover rate of 0.3.

Fig. 4 and 5 show optimized schedules synthesized by the
DSE, with DMA-based prefetching and without, respectively.
As expected, the schedule without prefetching has a longer
duration. For the Localization, Lane Detection, and SFM tasks
both a CPU and GPU implementation are available. Detection
is fixed to the GPU. Allocating the long-running Localization



task to the GPU seams reasonable, as its at takes thrice
the time execute on a CPU. The two solutions differ in
the allocation of Lane Detection. The DMA-based schedule
exploits parallelism, which, however, would not lead to a
shorter duration in the no-DMA case. The mapping of the SFM
task is disadvantageous in both cases as it would have a shorter
duration if mapped to the GPU. This might be resolved by
additional MOEA iterations, a modified stopping criterion for
the latency bisection, and/or an increased SMT solver timeout.

The shared off-chip memory appears to form the bottleneck
of the system’s platform. However, the data transfer times
are almost negligible compared the task execution times.
This results from the assumption that DMAs can access the
memory with the same bandwidth as the GPU. Furthermore,
we do not consider any interferences from cores as all tasks
are defined to use the DMA for data transfers such that
no conflicts can occur. We assume that DMA initialization
latency is negligible, on the one hand because of the large
amount of transferred data, and on the other hand because we
neglect multi-rate scheduling for which an initialization would
be required for each of the task instances. Overall, even if
the data transfer latencies would be increased by, e.g., DMA
initialization costs or additional interferences, the effect would
be barely noticeable due to the dominance of computation
times and DMA-based data fetching parallelization. Also, data
prefetching is performed only once per task such that a large
local memory would be needed. This could be resolved by
splitting up tasks that require large data sets.

V. CONCLUSION

Our contributions are many-fold: We present an importer to
automatically convert device-level AMALTHEA models into
system-level AutoFOCUS 3 models. We also extend a MOEA-
DSE framework that integrates with the AutoFOCUS 3 MDE
tool to handle such models. In order to jointly optimize task
allocations and the corresponding time-triggered schedules, we
integrate a Z3-based SMT scheduler into the MOEA-DSE.
Lastly, the DSE framework considers both task and DMA
scheduling to optimize the response time of real-time tasks.

In future work, we will improve the scalability of SMT-
based multi-rate scheduling and integrate into our implemen-
tation. Furthermore, we aim at combing the DSE frame-
work with more elaborated system-level timing analysis tools
like [15] in order to directly incorporate more complex re-
sponse time analyses into the exploration’s schedule synthesis
phase. Finally, we want to improve the integration of device-
level with system-level modelling to reduce the semantic
gap between these levels, e.g., by combining point-to-point
communication with shared-memory-based communication.

REFERENCES

[1] Blickle, T., Teich, J., and Thiele, L., “System-level
synthesis using evolutionary algorithms,” Des. Autom.
Embed. Syst., vol. 3, no. 1, pp. 23–58, Jan. 1998.

[2] Thaden, E. M., “Semi-automatic optimization of hard-
ware architectures in embedded systems,” PhD thesis,
Universität Oldenburg, 2013.

[3] Eder, J., Zverlov, S., Voss, S., Khalil, M., and Ipa-
tiov, A., “Bringing DSE to life: Exploring the design
space of an industrial automotive use case,” in 2017
ACM/IEEE 20th Int. Conf. Model Driven Eng. Lang.
Syst. (MODELS), Sep. 2017, pp. 270–280.

[4] Hilbrich, R. and Behrisch, M., “Improving the efficiency
of dislocality constraints for an automated software
deployment in safety-critical systems,” in Comb. Proc.
Workshops German Softw. Eng. Conf., 2018, pp. 90–95.

[5] Zimmermann, A., Maschotta, R., Wichmann, A., and
Hilbrich, R., “Optimization of systems with nested
design space,” in Int. Syst. Conf. (SysCon), IEEE, 2018.

[6] Benini, L., Bertozzi, D., Bogliolo, A., Menichelli,
F., and Olivieri, M., “MPARM: Exploring the multi-
processor SoC design space with SystemC,” J. VLSI
Signal Processing systems for signal, image and video
technology, vol. 41, no. 2, pp. 169–182, Sep. 2005.

[7] Migge, J., Balbastre, P., Barner, S., Chauvel, F., Craciu-
nas, S. S., Diewald, A., Durrieu, G., Haugen, Ø., Seyed,
A. A. J., Pagetti, C., Oliver, R. S., and Vasilevskiy,
A., “Algorithms and tools,” in Distributed Real-Time
Architecture for Mixed-Criticality Systems, Ahmadian,
H., Obermaisser, R., and Perez, J., Eds. CRC Press,
Aug. 21, 2018, ch. 5, p. 98, ISBN: 978-0-8153-6064-3.

[8] Voss, S. and Schätz, B., “Deployment and schedul-
ing synthesis for mixed-critical shared-memory appli-
cations,” in 2013 20th IEEE Int. Conf. Workshops Eng.
Comput. Based Syst. (ECBS), Apr. 2013, pp. 100–109.

[9] Saidi, S. and Syring, A., “Exploiting locality for the
performance analysis of shared memory systems in
mpsocs,” in 2018 IEEE Real-Time Systems Symposium
(RTSS), Dec. 2018, pp. 350–360.

[10] Eclipse, APP4MC, https://www.eclipse.org/app4mc/.
[11] Aravantinos, V., Voss, S., Teufl, S., Hölzl, F., and

Schätz, B., “AutoFOCUS 3: Tooling concepts for
seamless, model-based development of embedded sys-
tems,” Joint Proc. ACES-MB 2015–Model-based Archit.
Cyber-phys. Embed. Syst., p. 19, 2015.

[12] Barner, S., Diewald, A., Migge, J., Syed, A., Fohler, G.,
Faugère, M., and Pérez, D. G., “DREAMS toolchain:
Model-driven engineering of mixed-criticality systems,”
in 2017 ACM/IEEE 20th Int. Conf. Model Driven Eng.
Lang. Syst. (MODELS), Sep. 2017, pp. 259–269.

[13] Diewald, A., Voss, S., and Barner, S., “A lightweight
design space exploration and optimization language,” in
Proc. 19th Int. Workshop Softw. Compil. Embed. Syst.
(SCOPES), ACM, 2016, pp. 190–193.

[14] Saidi, S., Tendulkar, P., Lepley, T., and Maler, O.,
“Optimizing explicit data transfers for data parallel
applications on the cell architecture,” TACO, vol. 8,
no. 4, 37:1–37:20, 2012.

[15] Diemer, J., Axer, P., and Ernst, R., “Compositional
Performance Analysis in Python with pyCPA,” in Proc.
Int. Workshop Anal. Tools Methodol. Embed. Real-time
Syst., 2012.


