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Abstract—The objective of this paper is to provide a solution
to this year’s FMTV industrial challenge presented by Robert
Bosch GmbH. Last year, the challenge consisted in a timing
and schedulability analysis of an engine management system
to be executed on a shared–memory multi-core platform, in
which the tasks were scheduled following a mixed preemptive
configuration. This year, the challenge is integrated with the
analysis of two different inter-task communication semantics,
namely, Implicit Communication and Logical Execution Time.
Whereas the former focuses on data consistency as proposed by
AUTOSAR, the latter guarantees temporal determinism. This
paper presents a formal definition of these semantics, their
possible implementations (Challenge I) as well as their overhead
(Challenge II). Taking into account these semantics, we perform
an end-to-end-latency analysis of the event chains present in the
given AMALTHEA model (Challenge III).

I. INTRODUCTION

In the recent years, the amount of electronics in automotive
vehicles has risen dramatically, and it will further increase
in the future. The technological reason behind such a trend
in the automotive industry is due to increased number of
safety and control functionalities that are being integrated in
modern cars, as well as to the replacement of older hydraulic
and mechanical direct actuation systems with modern by-
wire counterparts, leading to an increased safety and comfort
at a reduced unit cost. Well-known examples are electronic
engine control, ABS, electronic stability program (ESP), active
suspension, etc. With the evolution of processors, several
industries are facing a transition from single-core to multi-core
systems. This kind of platforms allow application providers to
continue exploiting Moore’s law greedy demand for computing
power without incurring thermal and power problems.

In the automotive domain, multi-core platforms bring major
improvements for some applications requiring high perfor-
mance such as high-end engine controllers, electric and hybrid
powertrains, advanced driver assistance systems, etc. More-
over, the increased computational power of multi-core plat-
forms may allow integrating into a single controller multiple
functionalities that were spread around different ECUs, reduc-
ing the number of computing units as well as communication
overhead. Some of the cores may be dedicated to handling
low-level services (AUTOSAR’s basic software) or high-level
services (AUTOSAR’s application software), provided the

necessary timing and safety constraints are satisfied, adapting
existing design methods to the new multi-core paradigm.

The basic timing requirement for most tasks in automotive
systems is to finish execution before their deadline. Typically,
different hard real-time tasks share the same hardware and
software resources, relying on each other to implement a
desired functionality. The resulting inter-task communication
might lead to data consistency issues.

This paper presents a brief overview of a solution to
the FMTV verification challenge [1]. The challenge consists
in the analysis of a powertrain application that runs in a
multi-core embedded platform. The application information is
abstracted and represented through the AMALTHEA model.
AMALTHEA is an open source platform for the modeling of
embedded multi/many core systems. The AMALTHEA model
contains the hardware description, constraints and software
requirements. The model follows the same hardware and
software specification of the 2016 model challenge [2], but
with different inter-task communication semantics, namely,
implicit communication and Logical Execution Time (LET).
Specifically, the addressed challenges are:

1) propose and demonstrate how implicit and LET com-
munication may be realized, e.g., by adding additional
runnables and/or tasks performing copy operations.

2) compute the overheads in terms of extra cycles used
for memory access and also in terms of extra memory
required due to the proposed implementation.

3) compute end-to-end latencies (age/reaction latency) of
the event chains (best, average and worst case). The
solution should be able to handle multi-rate effect chains
consisting of tasks with harmonic and non-harmonic
periods.

4) propose a different label mapping that could possibly
reduce the memory access overheads.

5) factor in the effects of contention on the interconnect in
the memory access overhead and show the impacts on
end-to-end latencies.

II. SYSTEM MODEL AND NOTATION

This section describes the terminology and notation used
throughout the paper, following the solution provided last year



in [3] and considering the information abstracted out of the
AMALTHEA model.

The smallest functional entity in the automotive manage-
ment software model is called runnable. Runnables having
the same functional period according to the control dynamics
are grouped into the same task. In the simplest case, one
functionality is realized by means of a single runnable. How-
ever, more complex functionalities are typically accomplished
using several communicating runnables, possibly distributed
over multiple tasks.

The platform is assumed to comprise four identical cores,
with tasks and runnables statically partitioned to the cores,
and no migration support. Each task τi is specified by a
tuple (Ci, Di, Ti, Pi, PTi), where Ci stands for the worst-
case execution time (WCET), Di is the relative deadline, Ti
is the period, Pi is the priority, and PTi defines the type
of preemption. Every period Ti, each task releases a job
composed of γi subsequent runnables, where τ ri represents the
rth runnable of τi, with 1 ≤ r ≤ γi. The worst-case execution
time of τ ri is denoted as Cri . Therefore,

Ci =
∑

r∈[1,γi]

Cri . (1)

We also denote as C
r

i the cumulative execution time of
runnables τ ,i . . . , τ

r
i , i.e.,

C
r

i =
∑
r∈[1,r]

Cri . (2)

Tasks are scheduled by the operating system based on
the assigned (fixed) priorities. The scheduling policy may
be either preemptive or cooperative, as specified by PTi.
Preemptive tasks may always preempt lower priority tasks,
while cooperative tasks may preempt a lower priority one only
at runnable boundaries. Preemptive tasks are assumed to have
always a higher priority than any cooperative task.

The model assumes one instruction-per-cycle (i.e., IPC =
1), so that the execution time of a runnable τ ri , without
taking memory computation into account, can be computed
as Cri = Eri /f , where Eri is a bound on the number of
instructions for the considered runnable, and f is the core
frequency. The computational phase is also characterized by
a parameter FR/W` that represents the number of times a
runnable accesses a label (a.k.a. frequency access in the
model).

Regarding the type of access, a task can be either a sender
or a receiver of a label. A sender is a task that writes a label. In
the considered AMALTHEA model, there is only one sender
per label, while there may be multiple receiving tasks reading
that label.

The time it takes to access a label depends on the memory
the label is mapped on to. If the label is allocated to the local
memory, the considered task may access it within 1 clock
cycle. Otherwise, if the label is in the LRAM of a different
core or it is in the GRAM, the task pays an access penalty
of 8 time units. Since multiple cores may concurrently access

the same shared memory, an additional contention penalty is
paid when accessing external memories due to the arbitration
mechanism. The model assumes a FIFO arbitration, so that a
core may wait up to m cycles to obtain access to the addressed
memory, where m = 4 is the number of cores.

Since reading and writing times are assumed to be equiva-
lent in the model, we denote as ξ`(x) the time it takes to access
a shared label ` from memory x, where x may be GRAM ,
local LRAM (LRAML) or external LRAM (LRAME).
In the considered model, we thus have ξ`(GRAM) =
ξ`(LRAME) = 8 +m, and ξ`(LRAML) = 1.

The overall worst-case execution time Cri of runnable τ ri
taking into consideration the memory computation of all labels
` is given by,

Cri =
Eri
f

+
∑
`

{
F ri,` ∗ ξ`(x)

}
(3)

where F ri,` represents the number of times the label ` is
accessed by runnable τ ri .

A. Communication semantics

In line with the multi-core complexity trend, automotive
applications are evolving towards more complicated task and
runnable settings. As tasks communicate across the memory
hierarchy, data consistency problems may arise. Different
communication semantics have been proposed in order to
provide a deterministic and consistent task communication.
The challenge proposes an analysis of (i) implicit and (ii) LET
communication semantics.

According to AUTOSAR’s implicit communication [4],
tasks accessing shared labels should work on task-local copies
instead of the original labels. To avoid data inconsistency, each
task instance performs a copy of the required labels at the
beginning of its execution. After working on local copies in
an exclusive way, it then publishes its results at the end of its
execution. Depending on the task instance and the delay due
to interfering tasks, the time it takes to update a shared label
may significantly vary.

Logical Execution Time (LET) [5] [6] is a hard real-time
programming abstraction that was introduced with the time-
triggered programming language Giotto in order to improve
the determinism of the communication times. As the relevant
behavior of real-time tasks is determined by when inputs are
read and outputs are written, the LET semantics requires that
inputs and outputs are updated logically at the beginning and
at the end of the so called communication interval, i.e., in
correspondence to the release times of the communicating
tasks. This allows to deterministically fix the time it takes
from reading an input to writing an output regardless of the
actual response time of the involved communicating tasks.

III. INTER TASK COMMUNICATION

In this section, we describe the implementations proposed
for the Implicit and LET communication paradigms.



A. Implicit communication

Let Ii and Oi be the set of all shared labels read and written
by tasks τi, respectively. Ii and Oi therefore represent the
inputs and outputs of the considered task. Our proposal for
implicit communication suggests that any task τi accessing
a shared label works on a copy instead of the original
label. Copies are created, statically allocated to the task-
local scratchpad and inserted in runnables at compile time.
Furthermore, two task-specific runnables τ0i and τ (γi+1)

i (also
called τ lasti for simplicity) are to be inserted at the beginning
and at the end of the task. Runnable τ0i is responsible of
reading shared labels to the local copies, while τ lasti will
write the local copies to the corresponding shared variables.
If İi and Ȯi represent the set of τi-local copies of the labels
contained in Ii and Oi, respectively, runnable τ0i updates İi,
whereas runnable τ lasti publishes its updates by writing Ȯi to
the corresponding shared variables in Oi. See Figure 1.

Figure 1. Implicit communication.

For example, suppose a task τi reads shared label L1 and
writes to shared label L2. Let Li,1 and Li,2 represent the τi-
local copies of L1 and L2 respectively. The implicit model
dictates that Li,1 be updated by runnable τ0i at the beginning
of task τi. After that, τi reads Li,1 and writes to Li,2, never
accessing the original labels L1 and L2. In the end, runnable
τ lasti writes the latest value of Li,2 to L2. It does not need to
publish L1, since it did not modify it. See Figure 2.

Figure 2. Implicit communication

An upper bound on the overhead introduced by the copy-in
(τ0i ) and copy-out (τ lasti ) runnables can be easily computed
as

C0
i =

∑
`∈Ii

ξ`(x), (4)

and
Clasti =

∑
`∈Oi

ξ`(x), (5)

where the sum is extended over all shared labels read (resp.
written) by the considered task τi. Note that the model assumes
that labels to be written are mapped on to the local scratchpad
of the (unique) writer task, while labels that are only read but
never written are mapped on to the global RAM. Therefore,
a copy-in may take 1 or 9 time units, while a copy out will
always take 1 time unit.

The total execution time of τi is computed as

Ci = C0
i + Clasti +

∑
r∈[1,γi]

Cri , (6)

where the execution time of a single runnable includes only
accesses to local variables, i.e., 1 time unit for each one of
the F ri,` accesses by the considered runnable:

Cri =
Eri
f

+ F ri,`. (7)

The additional memory occupancy in the implicit model is
given by the local copies created for shared labels, i.e., all
labels in Ii ∪Oi for all tasks τi.

B. LET communication

Differently from the implicit case, the LET paradigm en-
forces task communications at deterministic times, correspond-
ing to task activation times. In our implementation, each reader
creates one or more local copies of the shared label. Since the
considered model allows just one writer task for each label,
the writer task is allowed to directly modify the original label,
updating the readers copies at well-determined times.

We hereafter consider the communication between the
writer and one of the readers. Assume the writer has period
TW = 2 and reader TR = 5, as in Figure 3 left: while τW
may repeatedly write the considered label L, these updates
are not visible to the concurrently executing reader, until a
publishing point PnW,R, where the value is updated for the next
reader instance. This point corresponds to the first upcoming
writer release that directly precedes a reader release, i.e.,
where no other write release appears before the arrival of
the following reader instance. We call publishing instance the
writing instance that updates the shared value for the next
reading instance, i.e., the writer’s job that directly precedes
a publishing point. Note that not all writing instance are
publishing instances. See Figure 3, where publishing instances
are marked in bold red.

It is also convenient to define reading points QnR,W , which
correspond to the arrival of the reading instance that will first
use the new data published in the preceding publishing point
PnR,W . Figure 3 shows publishing and reading points for a case
where the writer task has a higher (a) or smaller (b) period
than the reader task.

Let Tmax = max(TW , TR). Publishing and reading points
for two communicating tasks can be easily computed as a
function of the task periods, as shown in the next theorem.



Figure 3. Publishing and reading points when the reader has a higher (a) or
smaller (b) period than the writer.

Theorem 1. Given two communicating tasks, the publishing
points of the writing task τW can be computed as

PnW,R =

⌊
nTmax

TW

⌋
TW , ∀n ∈ [1, nW,R], (8)

while the reading points of the reading task τR can be
computed as

QnW,R =

⌈
nTmax

TR

⌉
TR, ∀n ∈ [1, nW,R], (9)

where nW,R is the number of jobs released in a hyperperiod
by the task with the longest period, i.e.,

nW,R =
LCM(TW , TR)

Tmax
= nR,W . (10)

Proof. If the writer τW has a smaller period than the reader
τR, i.e., TW ≤ TR (as in Figure 3 left), there is one publishing
and one reading point for each reading instance. There are
LCM(τW , τR)/τR = nw,r such instances. Reading points
trivially correspond to each reading task release, i.e.,

QnW,R = nTR, ∀n ∈ [1, nW,R],

while publishing points correspond to the last writer release
before such a reading instance, i.e.,

PnW,R =

⌊
nTR
TW

⌋
TW , ∀n ∈ [1, nW,R].

Otherwise, when the writer τW has a larger period than the
reader τR, i.e., TW ≥ TR (as in Figure 3 left), there is one
publishing and one reading point for each writing instance.
Again, there are LCM(τW , τR)/τW = nw,r such instances.
Publishing points trivially correspond to each writing task
release, i.e.,

PnW,R = nTW , ∀n ∈ [1, nW,R],

while reading points correspond to the last reader release
before such a writing instance, i.e.,

QnW,R =

⌈
nTmax

TR

⌉
TR, ∀n ∈ [1, nW,R].

It is easy to see that, in both cases TW ≤ TR and TW ≥ TR,
the formula for PnW,R and QnW,R are generalized by Equations
(8) and (9). Note that when TW = TR, PnW,R = QnW,R =
nTW .

Let IW,R denote the set of labels written by τW and read
by τR. For each of these labels, the reading task τR creates a
local copy to which it has exclusive access. Let İW,R denote
the set of τR-local copies of the labels contained in IW,R. A
communication-specific runnable is to be inserted to update
İi,j at the end of the communication period, i.e., by the latest
completing task before a publishing point.

We hereafter treat separately the cases of (i) harmonic syn-
chronous communication and (ii) non-harmonic synchronous
communication. The asynchronous case will be considered
as future work since the given AMALTHEA model does not
provide enough information to properly model interrupts and
adaptive variable-rate (AVR) tasks [7].

1) Harmonic Synchronous Communication (HSC): Two
communicating tasks τW and τR have harmonic periods if
the period of one of them is an integer multiple of the other.
When a harmonic synchronous communication (HSC) is estab-
lished, the following relations hold: LCM(TW , TR) = Tmax,
nW,R = nR,W = 1 and PnW,R = QnW,R = nTmax, i.e.,
publishing and reading points are integer multiples of the
largest period of the communicating tasks.

Consider the example in Figure 4, where two tasks τl and
τs, with Tl/Ts = 2, both read shared labels L1 and L2.
Moreover, τl writes to L1, while τs writes to L2. The proposal
suggests that τs and τl are to read Ls,1 and Ll,2 instead of
the original labels. These copies are to be updated by either
runnable τ lasts or runnable τ lastl depending on whichever job
finishes last before the next publishing point. In other words,
the responsibility to update the copies is given either to the
reader or to the writer, depending on which one completes last
in the communication interval. The first reader instance after
the publishing point is the first one that accesses the updated
value. Such a value will be used by all reading instances until
the next reading point.

Unlike the implicit communication, only one task pays the
overhead for maintaining the determinism in the communica-
tion. Assuming such a task is τi, its worst-case execution time
can be computed as

Ctotali =
∑

r∈[1,γi]

Cri +
∑

`∈Ii∪Oi

ξ`(x), (11)

where τi is assumed to update all its shared labels. Better
estimations are possible considering which task effectively fin-
ishes last in each communication period, making the analysis
significantly more complex.



Figure 4. LET harmonic communication

The additional memory occupancy is given by the local
copies created for shared labels, i.e., all labels in Ii for all
tasks τi.

2) Non-Harmonic Synchronous Communication (NHSC):
When two communicating tasks do not have harmonic peri-
ods, a non-harmonic synchronous communication (NHSC) is
established. The general formulas of Section III-B apply.

Like in the HSC case, the reading task of a shared label
accesses a local copy instead of the original label. However,
due to the misaligned activations of the communicating tasks,
at least two copies of the same shared label are needed in a
NHSC. A task-specific runnable is to be inserted at the end
of the writer in order to update the copies of IW,R before the
publishing point. If only one copy was used, a task could
be writing it while the reader is reading it, leading to an
inconsistent state. With two copies, instead, a reader may read
a local copy, while the writer may freely write a new value
for the next reading instance in a different buffer.

For example, consider a reading task τR and a writing task
τW communicating through a shared variable L, with 2TR =
5TW as in Figure 5. There are two τR-local copies, LR,1 and
LR,2, of the shared label L. The reading task τR reads from
one of these copies instead of the original label. These copies
are to be updated by the last runnable τ lastW of the writing task.
Note that τW directly writes to L instead of a local copy.

There might also be cases where three copies per labels
are needed in order to fulfill the LET determinism. Consider
Figure 6 where 5TR = 2TW . Then, τR reads either from LR,1,
LR,2 or LR,3 instead of the original label L. These three copies
are to be updated by runnable τ lastW . Note that τW directly
accesses L.

An extra copy of L is needed due to the fact that the value
computed by the second writing instance may be available
before the next reading point, depending on the execution time
of τW . If such publishing instance updates LR,1, instances
before the next reading point may read inconsistent values. If
it updates LR,2, the update by the previous publishing instance
would be overwritten without being used, and the next reading
instance would either read an inconsistent value, or a value
that does not correspond to a release time, violating the LET

Figure 5. Non harmonic TW communicates with TR

Figure 6. Non harmonic TW communicates with TR

paradigm. A third buffer is therefore needed to store the new
value avoiding conflicts.

In general, this happens when a publishing instance has a
best-case finishing time that may precede the next reading
point. Let us define wnW,R as the window of time between a
publishing point PnW,R and the next reading point QnW,R. Then,
using Equations (8) and (9),

wnW,R =

⌈
nTmax

TR

⌉
TR −

⌊
nTmax

TW

⌋
TW . (12)

If the best-case response time of a publishing instance
may be smaller than the corresponding wnW,R, a third buffer
is needed to store the new value. Depending on the above
condition, the additional memory occupancy due to the local
copies is two or three times the size of the labels in Ii for all
tasks τi.

IV. EFFECT CHAIN

In this section, we present an analysis of the third challenge,
computing end-to-end latencies of effect chains taking into
account age and reaction semantics.

An effect chain is a producer/consumer relationship between
runnables working on shared labels. Effects chains are as-
sumed to be triggered by an event or a task release. The
first task in the chain produces an output (i.e., writes to a
shared label) for another task following in the event chain.
This second task reads the shared label to write an output to



a different shared label, which may be then read by a third
task, and so on. When the last task produces its final output
the event chain is over.

In [8], four different communication semantics are described
to characterize the timing delays of effect chains. In particular,
the age latency is defined as “the delay between the last input
that is not overwritten until the last output with this input”. Age
is also referred to as last-to-last (L2L) delay. In other words,
the age latency denotes the largest delay between the start of
the event chain and its end, i.e., from the first input in the
chain until the last output related to this input. It measures for
how long may an input continue influencing the final output
of the event chain. This metric is particularly important for
control applications, such as, fuel injection control or cruise
control.

The reaction latency, also referred to as first-to-first (F2F)
in [8], is the delay between the first input that produces an
output until the arrival of a new output computed with a
new stimulus. In other words, the reaction latency denotes
the largest delay between the start of the event chain and
the first output produced with a different input, i.e., from the
first input in the chain until the first output not related to
this input. It measures how much time it may take for a new
event to propagate to the end of the event chain. This metric
allows estimating the reactivity to new inputs, e.g., measuring
the delay of a button-to-action event. Figure 7 depicts both
semantics.

Figure 7. Age and reaction semantics

Before computing end-to-end age and reaction latencies of
an effect chain, we first compute the maximum delay φri
between two instances of the same runnable τ ri belonging
to two consecutive jobs, i.e., the maximum delay between
two consecutive instances of a runnable accessing (reading
or writing) a particular label. In Figure 8, φri is derived as
a function of the best-case start time sri and the worst-case
response time Rri of runnable τ ri .

φri = Ti − sri +Rri − (ε1 + ε2). (13)

Assuming the first and the second runnable instance access the

shared label at the beginning and at the end of their execution,
respectively, it follows ε1 = ε2 = 0, and

φri = Ti − sri +Rri . (14)

Figure 8. Worst-case delay φri between two consecutive instances of runnable
τri .

In the following, we compute age and reaction latencies for
the considered communication semantics.

A. Explicit Communication

Consider an effect sub-chain where a runnable τ iW writes
to a label L which is in turn read by another runnable τ jR.
We hereafter compute the following latencies: worst-case sub-
chain propagation delay δi,jW,R, worst-case age latency αi,jW,R
and worst-case reaction latency ρi,jW,R. To do this, we consider
different worst-case settings where all the following conditions
hold:
C1. τ iW stores L right after τ jR started loading it.
C2. A first read occurs at sjR, while the next one is after φjR

time-units.
C3. A first write occurs at siW , while the next one is after

φiW time-units.
C4. All following reading accesses are separated by Tj time-

units.
If φjR < φiW , the worst-case sub-chain propagation delay

δi,jW,R corresponds to φjR, as shown in Figure 9. If instead
φjR ≥ φiW , δi,jW,R corresponds to φiW , as shown in Figure 10.
Therefore,

δi,jW,R = min{φjR, φ
i
W }. (15)

To compute the age latency αi,jW,R, we again separately
consider the cases with φjR < φiW and φjR ≥ φiW . The
corresponding settings leading to the worst-case age latency
are shown in Figure 11 and 12, respectively. Therefore,

αi,jW,R =

{
φjR +

⌊
φiW−φ

j
R

TR

⌋
TR, φjR < φiW

φiW , φjR ≥ φiW ,
(16)

or, equivalently,

αi,jW,R = min
{
φjR, φ

i
W

}
+

⌊
max{φiW − φ

j
R, 0}

TR

⌋
TR (17)



Figure 9. Worst-case sub-chain propagation delay when φjR < φiW

Figure 10. Worst-case sub-chain propagation delay when φjR ≥ φiW

Figure 11. Age latency αi,j
W,R when φjR < φiW .

To compute the worst-case reaction latency ρi,jW,R, more
subcases need to be considered. The worst-case situation with
φjR < φiW is depicted in Figure 13, where we compute the re-
action latencies of both the first and the second writing events.
The reaction latency of the first writing event is TW + φjR,

while that for the second one is φjR +
⌊
φiW−φ

j
R

TR

⌋
TR + TR.

The worst-case situation with φjR ≥ φiW is depicted
in Figure 14, where we compute the reaction latencies of
two different writing events, highlighted in bold red in the
figure. The reaction latency of the first writing event is

Figure 12. Age latency αi,j
W,R when φjR ≥ φiW .

TW +
⌊
φjR−φ

i
W

TW

⌋
TW + φiW , while that for the second one

is φiW + TR.
Merging both cases,

ρi,jW,R =

max
{
TW + φjR, φ

j
R +

(⌊
φiW−φ

j
R

TR

⌋
+ 1
)
TR

}
, φjR < φiW

max
{
TR + φiW , φ

i
W +

(⌊
φjR−φ

i
W

TW

⌋
+ 1
)
TW

}
, φjR ≥ φiW

(18)

Figure 13. Reaction latency ρi,jW,R when φjR < φiW .

Figure 14. Reaction latency ρi,jW,R when φjR ≥ φiW .



B. Implicit

As explained in Section III-A, AUTOSAR’s implicit com-
munication introduces two extras runnables at task boundaries
in charge of reading and publishing the shared labels. From
an end-to-end latency perspective, the implicit communication
can be considered as a particular case of the explicit semantic,
considering τ lastW and τoR as writing and reading runnables,
respectively.

For instance, the worst-case sub-chain propagation delay
δi,jW,R for any pair of communicating runnables τ iW and τ jR is
equal to δlast,oW,R , plus an extra delay ∆R due to the fact that
τR publishes all its shared labels at the end of its execution.
Figure 15 shows the case with φ0R < φlastW . It is easy to see that
∆R = RR−R0

R, where RR and R0
R represent the worst-case

response time of τR and τ0R, respectively. A similar situation
has been verified to happen in the scenarios considered for all
other worst-case latency settings. In order to get a new set of
relations for this type of communication, it is then sufficient
to add ∆R to Equation 15, 17 and 18.

δi,jW,R = δlast,oW,R + ∆R = min{φoR, φlastW }+ ∆R. (19)

αi,jW,R = αlast,oW,R + ∆R (20)

ρi,jW,R = ρlast,oW,R + ∆R (21)

Figure 15. E2E implicit semantic

C. LET

Given an effect chain (EC) involving multiple tasks, there
is a fixed number of possible communication chains in a
hyperperiod, starting from the end of the period of the first
task and finishing with the release of the last one in the EC.
We call these chains basic paths. The number of basic paths
can be computed as

ζ =
LCMη

i=1(Ti)

Tmax

Figure 16. E2E LET semantic

Where η represents the number of tasks composing an effect-
chain. Note that if all tasks in the EC are harmonic, then
ζ = 1.

Given a sub-chain composed of two communicating tasks
τW and τR, let nECW,R denote the number of jobs released in
the hyperperiod of the EC by the task with the longest period
in the sub-chain, i.e., nECW,R =

LCMη
i=1(Ti)

max(TW ,TR) .
Consider an EC composed of three tasks τi, τj and τk, as

depicted in Figure 16. The length θnEC of the n-th basic path
of the EC can be computed as θnEC = wni,j+P

n
j,k−Qni,j+wnj,k

∀n ∈ [1, ζ]. Once the length of the ζ basic paths is known,
see Algorithm 1, the last-to-first propagation delay δ(ρ), can
be computed as

δ(EC) = Ti + max
n∈[1,ζ]

{θnEC}+ Tk (22)

The end-to-end age latency can be computed as

α(EC) = max
n∈[1,ζ]

{
θnEC +Qn+1

j,k −Q
n
j,k

}
+ Ti, (23)

where Qnj,k = Pnj,k + wnj,k. The reaction latency as

ρ(ECF2F ) = max
n∈[1,ζ]

{
θnEC + Pni,j − Pn−1i,j

}
+ Tk, (24)

where Pni,j = Qni,j − wni,j .

D. Challenge effect chains

In this section, the worst-case age and reaction delays are
computed for the task set given for the FMTV challenge. For
space reasons, only the delays for the LET semantic are shown.
We considered the effect chains in Figure 17.

Effect chain 1. As shown in Figure 17, all runnables
involved in the considered effect chain belong to the same
task. However, the last runnable in the chain is always executed
first. This EC may be treated as one composed of two tasks
with the same period: τ10ms 1 and τ10ms 2, where the latter
contains R10ms 107 and the former R10ms 149, R10ms 243 and
R10ms 272. Then,

α(EC) = ρ(EC) = T10ms 1 + T10ms 2

= 10ms+ 10ms = 20ms



Algorithm 1 θnEC Parameters’ Calculation

1: if ζ == nECi,j then . τi and τj define the basic path
2: while 0 < n ≤ ζ do
3: while 0 < m ≤ nECj,k do
4: d← Pmj,k −Q

n−1
i,j

5: if d > 0 then break
6: m← m+ 1

7: points← (wn−1i,j ;n− 1;Qn−1i,j ;m;Pmj,k;wmj,k)
8: n← n+ 1

9: else . τj and τk define the basic path
10: while 0 < n ≤ ζ do
11: while 0 ≤ m ≤ nECi,j do
12: d← Pnj,k −Qmi,j
13: if d ≤ 0 then break

14: m← m+ 1

15: points← (wm−1i,j ,m− 1;Qm−1i,j ;n;Pnj,k;wnj,k)
16: n← n+ 1

17: return points

Figure 17. Amalthea effect chains

Effect chain 2. Since this effect chain presents a harmonic
communication among all its tasks, then ζ = 1 and

α(EC) = θ1EC +Q2
10ms,2ms −Q1

10ms,2ms + T100ms

= 10ms+ 100ms+ 100ms = 210ms

ρ(EC) = θ1EC + P 1
100ms,10ms − P 0

100ms,10ms + T2ms

= 10ms+ 100ms+ 2ms = 112ms

.

Effect chain 3. This effect chain contains an ISR. Based
on the given AMALTHEA model, the interrrupt is treated as
a sporadic task with a period between 700us and 800us. Since
799us is the period length that maximizes the end-to-end age
and reaction delays, with n = 179 and n = 180 respectively,
and the EC is a NHSC, we obtain

α(EC) = max
n∈[1,799]

{
θnEC +Qn+1

2ms,50ms −Qn2ms,50ms
}

+799us

= θ179EC +Q180
2ms,50ms −Q179

2ms,50ms + 799us

= 2798us+ 50000us+ 799us = 53, 597ms

ρ(EC) = max
n∈[1,799]

{
θnEC + Pn799us,2ms − Pn−1799us,2ms

}
+50ms

= θ180EC + P 180
799us,2ms − P 179

799us,2ms + 50ms

= 2461us+ 50337us+ 50ms = 102, 798ms

V. CONCLUSION

In this paper we presented a solution for the FMTV chal-
lenge 2017. We proposed a formal implementation for the
implicit and LET communication paradigms, analyzing the
impact introduced in terms of memory footprint and commu-
nication delay. Moreover, we introduced a precise calculation
of two effect-chain propagation delay semantics: age and
reaction.

As a future work, we plan to extend the analysis of LET
taking into consideration adaptive variable rate tasks (AVR)
and interrupt service routines (ISR) .

A Java implementation is available for the algorithms de-
scribed in this paper. Due to space constraints, details of results
and tools are not covered in this paper but may be downloaded
from the Github repository1.
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