
Compositional Analysis of the WATERS Industrial
Challenge 2017

Kai-Björn Gemlau, Johannes Schlatow, Mischa Möstl and Rolf Ernst
Institute of Computer and Network Engineering, TU Braunschweig
{gemlau,schlatow,moestl,ernst}@ida.ing.tu-bs.de

I. INTRODUCTION

With the introduction of multicore processors for real-time
embedded systems, the influences of the memory subsystem
got in focus for timing analysis. Therefore, the 2017th FMTV
challenge extends the previous one with additional information
on the memory subsystem. We show how Compositional
Performance Analysis (CPA), as introduced in [1] and [2], can
be used to compute worst-case timing guarantees for a given
processor system with focus on implicit communication or
LET. Further we discuss the different implementation options
that are not clarified by the given Amalthea model and their
influences on our analysis. Particularly, we utilize the non-
preemptive FIFO behavior of the memory arbitration to limit
the amount of possible interference.

II. SUMMARY OF CONTRIBUTIONS

In the pages that follow, we present our contributions to
WATERS Industrial Challenge 2017. First, we propose how
we implement implicit and Logical Execution Time (LET)
communication with copy operations, double buffering and
additional tasks (Section III). In Section IV, we will have
a look at the assumptions we derive from the challenge
model in order to perform a timing analysis of the memory
accesses, compute the tasks’ response times using pyCPA [3]
and, ultimately, calculate worst-case end-to-end latencies for
particular cause-effect chains. More precisely, our solution
handles memory contention on the crossbar and blocking from
critical sections on the Local RAM (LRAM). W.r.t. end-to-end
latencies, we cover both semantics (data age and reaction time)
without restrictions on the activation patterns/periods of the
tasks. We provide the details of our pyCPA analysis extension
in Section V and evaluate the memory overheads (in time and
space) as well as the achieved latency bounds for the given
cause-effect chains.

III. IMPLEMENTING IMPLICIT AND LET COMMUNICATION

With implicit communication, a task takes a local copy of
all data it is working on (copy-in) from the shared regions,
executes all runnables, and writes the results back (copy-out)
to its shared region when it is finished (cf. Fig. 1). Fig. 2
illustrates the tasks’ memory structure in the LRAM (cf. Task
3): The private region holds all the local copies of the read
and write labels. During the copy-out phase, the write labels
are copied from the private to the shared region.

copy-in runnable ρ1 . . . runnable ρn copy-out

copy-in runnable ρ1 . . . runnable ρnLET

implicit

Fig. 1. Task structure for implicit and LET communication with copy-in/copy-
out phases and runnable execution.

private

ptr

shared 1

shared 2 private

ptr

shared 1

shared 2

private

shared

Task 1

Task 2

Task 3

LET

implicit

copy-in

copy-in

copy-out

copy-in

switch

read labels
write labels
read/write labels

Fig. 2. Task memory structure in the implicit and LET communication
scenario.

LET separates the computation and communication of a
task such that the write labels are published at specific time
intervals rather than at the end of a task’s execution. We refer
to these as LET intervals. As depicted in Fig. 1, the copy-out
phase is omitted in contrast to the implicit communication.
As presented in [4], LET can be efficiently implemented as a
form of double buffering, which avoids time intensive copy
operations. This is illustrated in Fig. 2 (cf. Task 1&2): In
the copy-in phase, Task 1 copies the required read labels
from global memory to its private region. In addition, the
task holds two separate shared regions (double buffer). During
the runnables’ execution, the labels are either read from the
private region or written to one of the shared regions. A pointer
(ptr region) stores which of the shared regions is currently
published (and therefore not written to). At the corresponding
LET intervals, a separate instance will switch the ptr in an
atomic operation. Note that we assume this switch never
happens while the task is executing. This can be achieved by
adjusting the LET intervals conservatively and furthermore be



ensured by a response-time analysis that verifies that a task
always finishes within its LET interval. For each task, we add
a higher-priority task that executes at the LET intervals and
implements the switching between the buffers. We refer to this
tasks as LET tasks. Furthermore, analysis must ensure that the
pointer is not switched while a copy operation from the shared
region is in progress. Note that the double buffering requires
an additional memory access to the ptr region for the task
itself and all tasks that access the shared regions during the
copy-in phases.

Both approaches induce a memory overhead in the LRAMs
while the DRAM usage remains constant. For implicit com-
munication, the LRAM needs to be partitioned such that a
private region can store all labels accessed by the task. With
the assumed LET implementation, two regions for the write
labels and one private region for the copied labels are needed.
In summary, this equals the memory overhead of implicit
communication plus one data word for the ptr region. Further
evaluation of memory and runtime overhead takes place in
Section V.

IV. MODELING AND ASSUMPTIONS

For our system model we make a set of assumptions which
are not explicitly covered by the challenge model:

• The LRAMs are dualported, i.e. the local core and the
crossbar can access the LRAM at the same time.

• Task internal communication between runnables is always
done via the private memory area.

• Copy-in/copy-out phases are implemented as critical sec-
tions.

• One 32bit memory access is one arbitration in the cross-
bar.

• FIFO arbitration in the crossbar is fair.

The remainder of this sections moves on to describe in
further detail how we model the memory subsystem and the
entire multi-core processing system in order to perform a CPA
and calculate end-to-end latencies.

A. Modeling of the memory subsystem

The presented processor consists of four cores, each with its
own LRAM and a shared DRAM. Access to foreign LRAMs
or DRAM is done through a central crossbar. Fig. 3 shows
the architecture with the access latencies marked at the arrows.
Notice that any memory access from the crossbar to an LRAM
or DRAM takes one cycle whereas the cores experience an
additional (protocol) overhead of 8 cycles for each access to
the crossbar.

The FMTV challenge assumes the following memory map-
ping:

1) Labels that are only read (and never written by any
runnable) are stored in the DRAM.

2) Labels are only written by one runnable and stored in
the core-local LRAM belonging to the core to which
their task is mapped.

In consequence each copy-in operation into an LRAM sees
contention at the FIFO scheduler of the crossbar in addition
to the access latencies between crossbar and LRAMs.

Core 0 LRAM 0 Core n LRAM m 

DRAM Crossbar 

1 

1 

1 
1 

8 

8 

Fig. 3. System overview with access latencies.

1) Local Memory Contention: As illustrated in Fig. 1 the
copy-out operation is performed at the end of a task. We
assume that copy operations are implemented in a critical
section, meaning no context switching can be done on the core
while it performs copy operations. As tasks are scheduled in
a Static-Priority Preemptive (SPP) manner, we only need to
consider the largest critical section on a core as blocking in
the timing analysis. Furthermore, as copy-out operations only
happen in the local memory, no contention from the crossbar
can be seen (due to the dualported LRAM).

2) Crossbar Contention: Due to our assumptions on the
implementation, we only have to consider crossbar accesses
for copy-in operations, as for both implicit and LET, the copy-
out operation only takes place in the local memory. As a result,
the contention on the crossbar for a task’s copy-in phase only
depends on the number of other cores and the length (number
and size of labels) of the phase. For the arbitration of the
crossbar we assume a fair First-in-First-out (FIFO) scheduler,
where the worst-case scenario is that each foreign core places
exactly one access in the scheduler’s queue right before the
access under consideration. As the crossbar has a specified
memory word width of 32bits, each label that is less or equal
than this, is represented by one access. Labels that are larger
than 32bits are split into accesses of this granularity and
each access is arbitrated separately. Note that labels that are
produced by a runnable/task on the same core do not need to
be copied-in via the crossbar, and do not see contention from
its scheduling.

B. Timing Model

W.r.t. CPA we need to consider two types of resources: First,
the SPP scheduled cores, that execute the tasks containing the
runnables, and second, the crossbar. The crossbar is treated as
a FIFO scheduled resource.

Fig. 4 shows the two CPA model variants, depending on
whether LET or implicit communication is applied. In the
implicit communication variant (the right core in Fig. 4), each
task τi has a corresponding read tasks ri on the crossbar
resource. Here ri models all the accesses necessary to copy-in
remote labels. Note that we group all remote label accesses
into one task, although we assume that each access can be
interfered with from other cores. Due to our fair FIFO queuing
assumption, the grouping is possible. The effect is that the



worst-case response time (WCRT) of a task on the crossbar
resource only depends on the number and size of accesses
(and thus the transferred labels and their size).

In contrast to that, the LET case is shown on the left
resource in Fig. 4. Each task τi comes with an independent
high-priority LET task pi on the same processing resource, as
well as a read task ri on the crossbar to copy-in remote labels.
The read task takes care of copying-in labels that are produced
on other cores and is handled as in the implicit communication
case. Furthermore, the LET task pi takes care of switching the
pointer(s) at the LET interval boundaries. The pointer in the
LRAM ensures that always the current public dataset is read
by other cores.

Core (LET) Crossbar Core (impl.)

τ1

τ2

p2

p1

r1

r2

r3

r4

τ3

τ4

η1

η2

ηp1

ηp2

η3

η4

LET implicit

Fig. 4. Timing model variants, depending on the communication type. The
left variant shows the necessary tasks for LET, whereas the right illustrates
the implicit communication variant.

As explained earlier, the WCRT of a task on the mem-
ory resource only depends on the number and size of the
transferred labels due to our fair FIFO queuing assumption.
Consequently, we do not need the input event models of
the memory tasks (and therefore no iteration in the CPA
analysis between memory and processing resources). The best-
case/worst-case execution times of the processing tasks are
therefore calculated as a sum of the following terms:

• best-case/worst-case execution times of each runnable,
• best-case/worst-case response time (BCRT/WCRT) of the

corresponding memory task,
• memory transfer time for read/write accesses to the

LRAM during copy-in,
• memory transfer time for label accesses during runnable

execution,
• (implicit) memory transfer time for the read/write ac-

cesses to the LRAM during copy-out.
Note that for LET communication, we also need to include

the read accesses to the ptr regions in the memory tasks and
during the runnables’ execution.

Since we assume implicit deadlines and synchronous acti-
vation of all tasks, we can set the offsets of the LET tasks
as follows: We reserve an LET-band ∆LET at the end of
each period. The length of ∆LET is statically defined such
that every LET task can execute once during this interval.
The offset for each LET tasks is thus defined as Ti − ∆LET .
By additionally replacing the implicit deadlines with these
offsets, we ensure that an LET task can not overlap with its
computation task.

C. End-to-end latency

One part of this challenge consists in the computation of
end-to-end latencies for particular cause-effect chains. Such a
cause-effect chain is a sequence of communicating runnables.
For each pair of neighboring runnables (ρi, ρi+1) we either
have intra-task (they execute in the same task) or inter-task
communication. Intra-task communication does not impose
any additional delay if the runnables are in correct order.
Only if ρi+1 executes before ρi in the task (backward commu-
nication), we must consider the additional delay that results
from the fact that the data produced by ρi is processed in the
next activation of the task. This can also be seen as inter-task
communication between two instances of the same task. We
therefore model the cause-effect chain as a sequence of tasks in
which we only consider inter-task communication. Moreover,
in case of LET communication, the inter-task communication
only takes place between the LET tasks.

τ1

τ2 r1 w1

r2 w2

WCRT 1

WCRT 2
d+1,2

implicit

LET

τ1

τ2

p1

r1 w1

r2

offset

WCRT WCRT 2
d+1,2

Fig. 5. Latency computation for implicit and LET communication from τ1
to τ2 based on WCRTs, offsets and maximum distances between write (wi)
and read (ri) times. Note that p1 represents the LET task for τ1.

We base our end-to-end latency analysis on the evaluation of
read and write events of all labels consumed and produced by
an LET task. In particular, we formulate a cause-effect chain
as a sequence of read/write events and bound the distance
between each pair of neighboring events. Fig. 5 shows such
an exemplary cause-effect chain (r1, w1, r2, w2) for implicit
and LET communication. It also illustrates the write time for
task τ1 in the LET case, that resides at the end of p1.

In Section V, we will present the details how the event times
are computed from the best-case/worst-case response times
(BCRT/WCRT) and relative activation offsets of the (LET)
tasks as illustrated in Fig. 5. Furthermore, we will provide
upper bounds for the maximum distance (d+ in the Fig. 5)
between write and read times for each neighboring pair of
tasks, and between the read and write times for the data from
each task. In particular, we formulate different bounds for
the data age and reaction time semantics such that end-to-
end latencies can be computed as the sum of these maximum
distances in both cases.

V. ANALYSIS AND EVALUATION

For the analysis of the challenge scenario, we use pyCPA
[2]. Among others, it computes the worst-case/best-case re-
sponse times for each task τi, which we denote by R+

i /R−
i in



the remainder of this section. The calculated response times
serve as basis for the end-to-end latency analysis of the given
cause-effect chains. The source code which implements the
challenge model and analysis is publicly available1.

Our analysis results are grouped as follows: Section V-A
provides the response-time results on task level for implicit
communication and LET. Furthermore, we elaborate on the
necessary additional execution time for copy operations de-
scribed in Section IV-B. The additional memory overhead
for the LET implementation is presented in Section V-B.
Section V-C gives the detailed result for the three effect-chains
that are included in the Amalthea model.

A. Timing results

The results of the task-level timing analysis are presented
in Fig. 6. Since the given Amalthea model leads to processor
loads over 100%, we used a common scaling factor of 0.7
for the execution times of all runnables. This is equivalent
to a 40% increase of the system frequency and results in a
maximum load of 94% on Core 1.

Fig. 6a shows the calculated WCRTs for all tasks and ISRs
for LET (filled boxes) and implicit communication (striped
boxes). One can see that the LET overhead on the WCRT
is negligible due to the low-overhead double-buffering. The
WCRT is mainly influenced by the priority, e.g. a task sees
interference from all higher priority ones, and the size of
the largest critical section on each core. The results show
that interference is mainly driven by higher priority tasks, as
the critical section blocking is even observed by the highest
priority task on each core.

Fig. 6b provides a more detailed view of the timing overhead
due to the LET implementation. The overhead is displayed for
the Worst-case execution time (WCET) (filled boxes) as well
as the WCRT (striped boxes). The WCET is only influenced
by the modified copy-in phase, as it needs one label access
for each foreign producer task. As an example, the 10ms
task reads data from 15 foreign tasks and therefore has the
highest WCET overhead. The analysis is slightly pessimistic,
as it conservatively assumes that every read originates from
a task on a foreign core. Keep in mind that the WCRT
overhead as displayed in Fig. 6b is visible because the scale
is more than an order of magnitude lower than in Fig. 6a. To
investigate this, Fig. 6c provides additional information. On
the left y-axis, the ration of each task’s WCRT over its period
is displayed, which gives an indication of the task’s activity
(filled boxes). In addition to the task activity, the right y-axis
provides a comparison of the task’s read-activity during the
copy-in phase. Therefore, the share of copy-in time compared
to the task’s WCET is displayed.

Combining this information, the WCRT overhead in Fig. 6b
can be evaluated. For example, the Angle-Sync task has a high
WCRT overhead due to its high utilization since it has the
lowest priority on Core 1 and is influenced by the additional
LET Task for the 1ms task. In contrast to that, the 200ms and

1https://bitbucket.org/pycpa/waters2017

 0

 5

 10

 15

 20

 25

 30

 35

IS
R

1
0

IS
R

5

IS
R

6

IS
R

4

IS
R

8

IS
R

7

IS
R

1
1

IS
R

9

Ta
sk

1
m

s

A
n
g

le
S
yn

c

Ta
sk

2
m

s

Ta
sk

5
m

s

Ta
sk

2
0
m

s

Ta
sk

5
0
m

s

Ta
sk

1
0
0
m

s

Ta
sk

2
0
0
m

s

Ta
sk

1
0
0
0
m

s

IS
R

1

IS
R

2

IS
R

3

Ta
sk

1
0
m

s

W
C

R
T
 [

m
s]

WCRTLET

WCRTimplicit

(a) Worst-case response times of tasks.

0

1

2

3

4

5

6

7

IS
R

1
0

IS
R

5

IS
R

6

IS
R

4

IS
R

8

IS
R

7

IS
R

1
1

IS
R

9

Ta
sk

1
m

s

A
n
g

le
S
yn

c

Ta
sk

2
m

s

Ta
sk

5
m

s

Ta
sk

2
0
m

s

Ta
sk

5
0
m

s

Ta
sk

1
0
0
m

s

Ta
sk

2
0
0
m

s

Ta
sk

1
0
0
0
m

s

IS
R

1

IS
R

2

IS
R

3

Ta
sk

1
0
m

s

LE
T
 o

v
e
rh

e
a
d

 [
µ

s]

WCET Overhead
WCRT Overhead

(b) Overhead of the LET implementation on WCET and WCRT.

0

20

40

60

80

100

IS
R

1
0

IS
R

5

IS
R

6

IS
R

4

IS
R

8

IS
R

7

IS
R

1
1

IS
R

9

Ta
sk

1
m

s

A
n
g

le
S
yn

c

Ta
sk

2
m

s

Ta
sk

5
m

s

Ta
sk

2
0
m

s

Ta
sk

5
0
m

s

Ta
sk

1
0
0
m

s

Ta
sk

2
0
0
m

s

Ta
sk

1
0
0
0
m

s

IS
R

1

IS
R

2

IS
R

3

Ta
sk

1
0
m

s

 0

 2

 4

 6

 8

 10

 12

Pe
ri

o
d

 U
sa

g
e
 [

%
]

C
o
p

y-
in

 U
sa

g
e
 [

%
]

Task WCRT / Period
copy-in WCET / task WCET

(c) Execution profiles of the tasks.

Fig. 6. Timing analysis results. The colors represent the used processor core
and for each core the priority decreases from left to right.

1000ms tasks have a low utilization but read more labels thus
seeing higher interference.

B. Memory overhead

As we described in Section III, the core-local LRAMs can
be divided in a shared (write) and a private (read) region. For
the implicit communication, all data from foreign memories
is loaded in the private region during the copy-in phase. Table
I shows the required memory sizes in 32Bit words per core
and task for share (S), private data produced by foreign cores
(Prw) and read-only data from GRAM (Pro). We assume a
fixed 32Bit alignment here, e.g. an 8Bit label requires a 32Bit



memory cell. One can see that the ISRs only produce data for
other tasks and read static data from GRAM (not shown in
Table I). Therefore, their private regions only consist of read-
only data. An optimization would be to preload read-only data
for Core 0 at boot-time, avoiding unnecessary copy-in phases,
resulting in reduced interference on the crossbar by 25%.

TABLE I
LRAM CONSUMPTION IN 32BIT WORDS

Core 0 Core 2
Task S Prw Pro Task S Prw Pro

ISR 10 8 0 11 Task 200ms 182 196 40
ISR 11 13 0 9 Task 1000ms 291 209 131
ISR 6 10 0 11 Task 100ms 1218 974 809
ISR 7 18 0 18 Task 20ms 1017 913 964
ISR 4 7 0 28 Task 5ms 41 23 58
ISR 5 5 0 21 Task 50ms 206 222 143
ISR 8 5 0 20 Task 2ms 28 11 94
ISR 9 7 0 3∑

implicit 73 121
∑

implicit 2983 4787∑
LET 155 121

∑
LET 5973 4787

Core 1 Core 3
Task S Prw Pro Task S Prw Pro

Angle Sync 742 838 475 ISR 2 10 0 9
Task 1ms 76 71 146 ISR 3 12 0 13

ISR 1 12 0 18
Task 10ms 2075 1815 979∑

implicit 818 1530
∑

implicit 2109 2834∑
LET 1638 1530

∑
LET 4222 2834

For the LET case, sizes of the private regions remain the
same and sizes for the shared regions are doubled due to the
double buffering. In addition, one write pointer is required for
each task. The resulting memory sizes are shown in Table I as∑

implicit and
∑

LET . One can see that for LET on Core 2,
the resulting LRAM consumption is above 10.000 words. The
challenge model specifies 256KByte of LRAM per core which
is in principle sufficient to hold this as there is no information
about the code size of the runnables.

In contrast to implicit communication, LET adds additional
runtime overhead for the LET tasks and pointer access. We
assume a fixed execution time of 100ns for each LET task,
as it only updates the buffer pointer in the local LRAM. The
additional runtime overhead for the normal tasks depend on
their amount of data consumption by foreign tasks. For each
task where data is read from, one access to the foreign LRAM
is required to read the buffer pointer before the copy-in phase
is started.

C. End-to-end latency

As was motivated in Section IV-C, we compute the end-
to-end latency by the distances between the read (r) and
write (w) events of the corresponding tasks. A cause-effect
chain is given as a sequence of these events in the form
(r0, w0, . . . , ri, wi, ri+1, wi+1, . . . , wn). Note that the indexes
only resemble the relative order of tasks in the sequence. In
order to generalize the latency computation, we must therefore
formulate upper bounds for the distance between any ri and
wi and between any wi and ri+1. For backward intra-task

communication, we further allow cause-effect chains in the
form of (r0, w0, . . . , ri, wi, ri, wi, . . . , wn). We therefore also
require bounds between a write event wi and read event ri
of the same task. As a result, the end-to-end latency of the
chain under analysis is calculated as the sum of maximum
distances between each pair of events in the given sequence.
For this, we assume the read/write events to align with the
activation/completion events of a task.

Before we summarize the latency results from our analysis,
we formulate the upper bounds for the three different types of
read/write event distances: the read-to-write distance (wi−ri),
the inter-task write-to-read distance (ri+1−wi) and the intra-
task write-to-read distance (ri − wi).

1) Analysis of cause-effect chains: In order to bound the
read-to-write distance, we must distinguish implicit and LET
communication. For implicit communication, this distance is
easily bounded by the worst-case response time of the task τi.
On the other hand, for LET communication, we only need to
account the logical execution time of τi, i.e. its period:

wi − ri ≤

{
R+

i (implicit)

LET i (LET )
(1)

Here, we assume that offsets have been chosen carefully
such that the LETs can be enforced correctly (cf. Sec-
tion IV-B).

Regarding the intra-task write-read distance, we leverage
the assumption of implicit deadlines (i.e. the response time of
a task τi is never greater than its period) such that it is easily
bounded as follows:

ri − wi ≤

{
δ+i (2) −R−

i (implicit)

0 (LET )
(2)

where δ+i (2) is available from the CPA and denotes the
maximum distance between two consecutive activations of τi,
and R−

i denotes the best-case response time of τi.

A

B

C

ď
d̂

d̂

ď

Fig. 7. Write-read distances for implicit communication. Data produced by
A is undersampled by B, and subsequently oversampled by C.

With respect to the inter-task write-read distance, we need
to compute the distance between the relevant jobs of different
tasks in the cause-effect chain. Depending on the latency
semantics (data age or reaction time), the jobs considered



relevant may differ as soon as over- or under-sampling comes
into play. Let us have a look at Fig. 7, which shows a chain
of three implicitly communicating tasks (A, B, C) with under-
sampling between task A and B and over-sampling between
task B and C. Between each pair of tasks, the figure shows two
semantically different distances: the forward distance d̂ from a
write event to the next read event, and the backward distance ď
from a read event to the nearest preceding write event. Based
on these distances, we can formulate the maximum inter-task
write-read distance for data age and reaction time as follows:

ri+1 − wi ≤

{
d̂i,i+1 (reaction time)

ďi,i+1 (data age)
(3)

For under-sampling (i.e. period Ti+1 > Ti), d̂+i,i+1 is
bounded by the maximum distance between two activation
events of τi+1, i.e. δ+i+1(2). Similarly, for over-sampling, ď+i,i+1

is bounded by the maximum distance between two completion
events of τi, which we denote by δ̃+i (2). This can be bounded
by the maximum input event distance δ+i (2) plus the output
jitter [1]. In the other cases, the data is exchanged between
the neighboring jobs as shown in Fig. 7 (Eq. (4c) and (5c)).

For LET, this results in (logical) zero-time communication
between τi and τi+1 if both have have a harmonic period.
Otherwise the worst case distance is given by the modulo
of both periods. For implicit communication and data age
semantic, we differentiate whether τi is an ISR or whether
it is synchronously activated with τi+1. In the former case,
we bound the distance by the distance between two output
events of the ISR. In the latter case, τi+1 can either read the
data from the previous activation of τi or from its current
activation. Again, for non-harmonic periods, an worst-case
offset has to be taken into account (Eq. (7b), (7c)). Here, due
to the synchronous activation of both tasks and the priority-
based scheduling, we can assume that if τi+1 finishes after τi,
it can only start after τi finished and will therefore read the
new data. For the reaction time with oversampling, a slight
optimization can be done if τi has a shorter WCRT R+

i than
the period of of τi+1 (Eq (6a)). Consequently, we calculate d̂
and ď as follows:

d̂+i,i+1 =


δ+i+1(2) if Ti+1 > Ti (4a)
Φi,i+1 else (LET ) (4b)
f+i,i+1 else (implicit) (4c)

ď+i,i+1 =


δ̃+i (2) if Ti+1 < Ti (5a)
Φi+1,i else (LET ) (5b)
b+i,i+1 else (implicit) (5c)

with δ̃+i (n) = δ+(n) +R+
i −R−

i and Φk,l = Tk mod Tl.

f+i,i+1 =

{
δ+i+1(2) −R−

i if R+
i ≤ Ti+1 (6a)

δ+i+1(2) else (6b)

TABLE II
END-TO-END LATENCY RESULTS

Data Age Reaction Time
Chain implicit LET ∆ implicit LET ∆

1 23 20 3 23 20 3
2 188 222 −34 53 112 −59
3 14 53 −39 65 104 −39

b+i,i+1 =


δ̃+i (2) if τi is ISR (7a)
δ+i (2) −R−

i + Φi+1,i if R+
i ≥ R+

i+1 (7b)
Φi+1,i else (7c)

2) Results: The challenge model specifies three different
cause-effect chains that emphasize prominent cases: Chain 1
only consists of intra-task communication with forward and
backward dependencies. Chain 2 contains inter-task commu-
nication with oversampling, i.e. decreasing periods whereas
Chain 3 covers the undersampling case and starts with an ISR.

Table II summarizes our data age and reaction time results
for the three cause-effect chains given in the challenge model.
Note that we calculated the latencies from the activation of the
first task involved in the chain to the write action of the last
task in the chain. As there is no under-/oversampling involved
in Chain 1, the data age and reaction time results are the same.
LET provides slightly better results, as it does not suffer from
execution jitter. As also expected, for Chain 2, the data age is
longer than the reaction time due to the oversampling and vice
versa for Chain 3 (cf. Fig. 7). More interesting is the impact
of LET and implicit communication on the latencies of Chain
2 and 3. In general, LET results in higher latency bounds.
One reason for this is that LET delays the write time of the
last task in the chain, which, in our interpretation, determines
the end of the chain. This can be observed at Chain 3, which
ends with the 50 ms task and receives an additional delay of
approx. the difference between the task’s LET (50 ms) and its
WCRT.

REFERENCES

[1] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System Level Performance Analysis - the SymTA/S Approach,” in IEE
Proceedings Computers and Digital Techniques, 2005.

[2] J. Diemer, P. Axer, and R. Ernst, “Compositional Performance Analysis
in Python with pyCPA,” in 3rd International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems (WATERS), Jul.
2012.

[3] (2010-2017) pyCPA. [Online]. Available:
https://bitbucket.org/pycpa/pycpa

[4] M. Beckert, M. Möstl, and R. Ernst, “Zero-Time Com-
munication for Automotive Multi-Core Systems under SPP
Scheduling,” in Proc. of Emerging Technologies and Factory Automation
(ETFA), Berlin, Germany, Sep 2016. [Online]. Available:

http://dx.doi.org/10.1109/ETFA.2016.7733563


