
Computational Analysis of Complex Real-Time
Systems - FMTV 2016 Verification Challenge

Ingo Stierand, Philipp Reinkemeier, Sebastian Gerwinn, Thomas Peikenkamp
OFFIS, Oldenburg, Germany

{stierand,reinkemeier,gerwinn,peikenkamp}@offis.de

Abstract—Real-time scheduling analysis is an important step
in safety relevant embedded system design for many application
domains, such as avionics, automotive and automation. Increasing
system complexity, not least due to raising automated mobility,
requires constant evolution of the analysis approaches, resulting
in a vital research domain.

We like to contribute to the research by presenting a compu-
tational analysis approach, where the system model is unfolded
as discrete-time state transition system. The analysis engine
is tailored particularly for real-time scheduling analysis and
exploits respective optimisations. We show the applicability of
the approach on an industrial relevant problem, and discuss its
advantages and limits.

I. INTRODUCTION

The question whether a system can deliver its functions
timeliness when deployed on a hardware architecture is an in-
tegral part of the safety aspect of embedded system design for
many application domains, such as avionics, automotive and
automation. Real-time scheduling analysis is a well established
discipline, providing a wealth of methods to verify relevant
timing aspects of the deployed system. Most approaches
are based on also well-established models, so called task
networks, and differ mainly in details that reflect the focus
and capabilities of the underlying mathematical method.

Although the discipline exists for several decades, publicly
available benchmarks were rather rare for a long time. People
sporadically came up with real-world or carefully designed
artificial examples [9], [6]. Such models help the community
to compare their methods, to investigate the individual advan-
tages (and disadvantages), and to evolve the approaches.

Recently, a group of researchers came up with the idea of a
verification challenge, where particularly timing analysis prob-
lems are made public, and invited all interested parties to try
their approaches and to discuss the results. We believe this is a
very good idea, which is proven to be an effective instrument
for progress in other formal verification communities.

We would like to contribute to this effort by providing
analysis for a system model that is derived from a large real-
world application. The authors of [5] constructed a generator
from a anonymised engine control application with thousands
of functions, which can be parametrised in order to obtain
appropriate benchmarks.

The work has been partially funded by the German Ministry for
Education and Research (BMBF) under the funding ID 01IS14029H
(AMALTHEA4public) and ID 01IS15031H (ASSUME)

The present system is given as an AMALTHEA4public1

(A4P) model, and can be downloaded from the WATERS
workshop website2. On this model, we apply a model-checking
based analysis [7]. In contrast to other existing, more general
frameworks like timed automata, our approach is based on the
idea to construct a highly specialised model-checking engine
particularly tailored for real-time scheduling analysis. This has
been done before, e.g., with the TIMES tool [1]. Our approach
however exploits discrete-time state space construction, using
a variant of time darts [4] in order to reduce the footprint of
state-space representation.

We briefly discuss the system model, and how we interpret
it where needed, in the following section. Section III intro-
duces the analysis approach and details how we tackle the
verification challenge. Results are presented in Section IV,
followed by a summarising discussion in Section V. Section VI
concludes the paper.

II. SYSTEM MODEL AND ITS INTERPRETATION

The system of the verification challenge consists of a multi-
core processing unit with four identical cores, which are
connected to a crossbar switch, and five memory banks. All
system components are running at 200 MHz, resulting in a
length of 5 ns for a processing cycle.

Every core is directly connected to its local memory bank.
Additionally, the cores can access all other local memory
banks as well as the global memory bank via the crossbar
switch, however, at the cost of additional cycles. The switch,
as stated in the challenge call [3], provides full connectivity.
We interpret this such that no congestion occurs at the switch
due to concurrent memory accesses from different cores. The
switch imposes 8 cycles latency on a memory access. The
challenge call further states that accesses to the memory banks
are serialised using a FIFO strategy. This is also true for the
local memories; all accesses from the local core as well as
from other cores via the switch go to the same FIFO buffer.
Every memory access takes 1 cycle.

The system consists of 21 tasks. Each task contains multiple
runnables, which are executed sequentially, as the call graphs
in the model indicate. All runnables consist of a similar set of
runnable items, which is (1) a sequence of read accesses to
various memory cells (labels), (2) execution of an instruction

1http://www.amalthea-project.org/
2https://waters2016.inria.fr/challenge/



Fig. 1. Analysis Model (all four cores with associated tasks, buses and
memories are omitted)

sequence abstracted by a probability distribution, and (3) a
sequence of write accesses to memory cells, in this order. We
interpret the runnable items as a sequence, i.e., read and write
accesses to the labels are performed one after the other.

The tasks are allocated to the four cores as shown in Fig-
ure 1. Each core executes an operating system that schedules
tasks according to the OSEK standard. To this end, tasks get
priorities in ascending order, with 0 being the lowest priority.
While these priorities are globally defined, task allocation
induces unique core-local priority orders. All except five tasks
are preemptively scheduled (cf. Table I). The remaining tasks
are cooperative. Preemptive tasks can preempt lower priority
tasks – no matter whether preemptive or cooperative – at any
point in time. Cooperative tasks can be preempted by higher
priority cooperative tasks only at runnable boundaries. Note
that, while the A4P meta-model defines so called schedule
points where cooperative tasks can be preempted, the authors
of the challenge explicate it otherwise.

All tasks are activated by individual stimuli. The A4P
modelling framework defines various kind of stimuli. Two
types are used for the model, namely periodic and sporadic.
According to the documentation, periodic stimuli are defined
by two parameters. The offset defines the time of the first task
activation after system initialisation. The recurrence parameter
defines the activation period relative to the first one. Sporadic
stimuli are defined by a probability distribution defining the
minimum and maximum inter-arrival time for task activations.
All sporadic stimuli in the model are defined by a uniform
distribution with lower and upper bound. We assume, as stated
by the authors of the challenge, that also for sporadic stimuli
the first event occurs at time 0.

The model finally contains three effect chains as shown in
Figure 2, which define data flows that can be observed in the
system. All events referred to by the chains are start events of
runnables. The first chain refers to a sequence of runnables that
all belong to task Task 10ms, which is (names are abbreviated)
{R149,R243,R272,R107}. A further inspection of the model
reveals that theses runnables indeed access common memory

Task_10ms
R149 R243 R272R107

Task_10ms
R8

Task_2ms

ISR_10 Task_2ms Task_50ms

C1-106 C107-148 C149-242 C243-271 C272-end

R19

C1-18 C19-end C1-7 C8-end

R3

C1-2 C3-end

R3

C1-2 C3-end

R36

C1-35 C36-end

Task_100ms
R7

C1-6 C7-end

R107

C1-106

Fig. 2. Three Effect Chains of the Challenge Model

labels; every runnable of the chain sequence (except the last)
writes to a label that is read by the subsequent runnable. As
the runnables of the task are executed in ascending numbering
order, the resulting data flow is spread over two subsequent
executions of the task, which is indicated in the top part of
Figure 2.

The other two are cross-core effect chains. The second chain
involves tasks Task 100ms, Task 10ms and Task 2ms, which
are allocated to Core 2 and Core 3, respectively. The third
chain also crosses two cores, Core 0 (ISR 10) and Core 2
(Task 2ms and Task 50ms).

The challenge states three sub-challenges. All of them ask
for tight lower and upper bounds of the end-to-end latencies
of the three effect chains. The first effect chain for example
is asking for lower and upper bound of the time between
the start events of runnables R149 and R107. The first sub-
challenge states that all memory accesses shall be ignored.
The other two state that memory accesses should be taken into
account, which induces additional latencies due to congestions
for memory accesses. Concerning the second sub-challenge,
we assume that the labels are allocated to the memory banks
as defined in the model. The third sub-challenge asks for
an allocation of the labels such that the end-to-end latencies
become minimal. We do not cope with this optimisation
challenge in the present paper.

III. ANALYSIS APPROACH

In order to keep analysis times and (memory) space manage-
able, we follow a compositional approach, where we consider
the challenge as a set of separate scheduling problems. To this
end, we re-model every core and its allocated tasks in terms of
our analysis model as exemplified in Figure 3. The top part of
the figure shows the relevant artefacts, namely event sources
(yellow boxes), tasks (blue circles) and processing units (grey
boxes). Event sources emit events according to their assigned
event stream behaviour, which is defined by four parameters
P−, P+, J and O. The time between any two subsequent
events is selected non-deterministically as follows: Given time
instants t′i+1 ∈ t′i+[P−, P+] the event source emits events at



Core 3

ISR_1

ISR_2

ISR_3

T_10ms R107
R149
R272

fin

act

act

act

act
act

act

Fig. 3. Analysis Model Example

time points ti ∈ t′i + [0, J ]. Generally, the first time instant is
chosen non-deterministically from the interval [O,O + P+],
i.e., t′1 ∈ [O,O + P+].

Event sources are hence sufficient to model periodic as well
as sporadic stimuli of the challenge model. As the stimuli
defined in A4P send their first event at a fixed offset (in
the model always 0), we have to remove the initial non-
determinism of the corresponding event sources in the analysis
model. This is obtained by command line parameters of the
analysis tool.

Tasks are activated by incoming events (here always act)
via their input ports (small white circles), and emit events
during execution via their output ports (small black circles).
Task execution finishes with the last emitted event. Tasks must
emit at least one event. Tasks have internal state transition
systems as shown at the right part of Figure 3. Depending on
the internal state of a task and the event that activates it, the
tasks execution is performed according to the annotation of
the corresponding transition. For example, if the task in the
figure is activated by an incoming act event, it executes the
corresponding transition, which is a loop at the sole task state
in Figure 3. During execution, it sends event f to output port
R107 after 1281 − 3804 µs “consumed” execution time, an
event to output port R149 after 753 − 2268 µs, and so on.
The task finishes execution with the last sent event.

The analysis model allows for two interpretations of the
execution times annotated at a transition. For simultaneous
transitions, the execution times for the individual output
events pass simultaneously. The output order of events with
overlapping execution time intervals is non-deterministic. For
sequential transitions, the execution times pass sequentially.
At the end of each execution time, the corresponding event
is emitted. Only sequential transitions where used for the
challenge.

The models used for analysis of the challenge have been
manually constructed. For the calculation of the execution
times however a simple parser tool has been implemented.
While a fully automatic translation would be possible, we
avoided the additional effort for the present work. The re-
sulting analysis model is depicted in Figure 1. The mini-
mal and maximal execution times obtained for the tasks, or
task segments, from the original model by summing up the
execution times of the involved runnables are depicted in
Table I with descending (core-local) priority order from top
to bottom. In order to enable calculation of bounds for the

TABLE I
TASK PARAMETERS (TIMES W/O MEMORY ACCESSES IN # CYCLES)

Core Task preempt. min max
0 ISR 10 yes 3.363 6.068
0 ISR 5 yes 25.825 51.636
0 ISR 6 yes 2.980 6.190
0 ISR 4 yes 33.242 73.160
0 ISR 8 yes 26.089 60.777
0 ISR 7 yes 34.678 64.974
0 ISR 11 yes 27.629 61.177
0 ISR 9 yes 35.617 74.097
1 Task 1ms yes 50.035 152.870
1 Angle Sync yes 260.919 761.071
2 Task 2ms yes 27.748 80.817
2 Task 5ms yes 73.108 186.363
2 Task 20ms no 721.008 2.093.688
2 Task 50ms no 262.830 616.897
2 Task 100ms no 625.239 1.883.595
2 Task 200ms no 14.041 27.697
2 Task 1000ms no 13.610 27.432
3 ISR 1 yes 3.075 7.011
3 ISR 2 yes 2.064 3.549
3 ISR 3 yes 2.424 4.787
3 Task 10ms yes 797.773 2.342.546

end-to-end latencies, the respective tasks have been modelled
using sequential transition executions as shown in Figure 2.
For the first effect-chain, task Task 10ms contains a sequential
transition with five execution times. The first one subsumes the
execution of runnables with numbers 1 to 106 of the tasks call
graph. The task contains a corresponding output port R107
at which the start event for runnable 107 can be observed.
The second execution segment subsumes the execution of
runnables 107 to 148, for which port R149 indicates start of
runnable 149, and so on.

During modelling, we made two notable observations. First,
execution times for runnables are expressed in terms of Weil-
bull distributions, which express probabilities for particular
execution times. The values in the model are no hard bounds,
but define an interval with a certain probability mass, which
in our case is 1 − 5 · 10−4 for all runnables. The definitions
imply that there is a non-zero (although potentially very small)
probability for each runnable to have very large execution
times, which may lead to overload situations where tasks
would miss every given finite deadline. Hence, from a safety
point of view, the system has to be rejected.

Secondly, we observed that the utilization of three cores
(1, 2 and 3) is larger than 100%. For a simple fixed-priority
scheduling, this would result in an infeasible task set that
cannot be scheduled. The A4P model however defines an
OSEK scheduling scheme for all cores, and a limit of one
for the maximum number of activations for each task. The
model hence implies (considering the OSEK specification) that
for each activated task all further activations of this task are
ignored until it finishes it execution.

We exploit a model-checking approach for analysing the
effect chains, which is implemented in the tool RTANA2 (cf.
footnote 3). It is fed with an analysis model and performs
a discrete-time state unfolding, resulting either in a closed



state-transition system, or terminates if it detects an infeasible
scheduling situation, such as a buffer overflow. After state
space construction, the tool performs a path analysis in order
to obtain the exact minimal and maximal latencies for the
respective effect chain. For further details about the approach
the reader is referred to [7].

For the verification challenge, we deal with the state-
space explosion problem in three ways. First, we introduce
abstractions where needed by increasing the length of discrete
time slots, at which scheduling decisions occur. The effect is
similar to the so-called tick scheduling [8]. Additionally, we
exploit the model characteristics where possible to perform
compositional analysis. Foremost, we consider the cores sep-
arately. If this does not sufficiently reduce the state space,
we incorporate analytic methods to obtain response times for
individual tasks. The results are fed back to the computational
analysis, indeed introducing additional over-approximations.
A detailed discussion of the analysis and their results is given
in the following section.

IV. RESULTS

As stated above, we took a number of measures to tackle
the problem of state space explosion. Although the analysis
exploits some symbolic representation of time, a main factor
for the resulting memory footprint is the length of discrete time
slots. With respect to the model, a suitable slot length would
be 5ns. Due to the characteristics of the challenge model with
its large execution time intervals, this leads to very large state
spaces. Hence, we decided to set the slot length to 1µs, which
indeed results in an over-approximate analysis. In order to still
obtain safe approximations, we adjusted the execution times
accordingly: for lower bounds we took the floor, and for upper
bound the ceiling. More precisely, we calculated an interval
[l′, u′] of 1µs slots from execution time interval [l, u] such that
l′ = b l

200c and u′ = d u
200e.

To further reduce analysis effort, we also constructed in-
dividual analysis models for the various sub-problems. For
example, two models have been constructed for the second
effect chain, where only relevant parts of the original model
remain. This includes to sum up the execution times of
runnables that are not relevant for the particular analysis task.

The following sections discuss the individual approaches
for the sub-challenges. The analysis models and result logs
are also publicly available3.

A. Sub Challenge 1 - First Effect Chain

The first effect chain does not involve further abstraction as
it involves only a single task running on Core 3. The model
used for analysing respective latency bounds is depicted in
Figure 3. The results in Table II for the first effect chain
also show the individual task response times obtained with
the analysis.

Scenarios for the results are depicted in Figure 4. The lower
bound corresponds to the situation where two subsequent

3https://vprojects.offis.de/rtana

 }

R149 R243 R272

B=max {C149-242 + C243-271+ C272-end

R107

> 10ms

(ignored) 

 }

R149 R243 R272

max {C1-148 

R107

min {C1-106

act act 

< 10ms

act

b
e
st

 c
a
se

w
o
rs

t 
ca

se

max {C1-106+ CISRi
 }

10ms-B+

10ms

+ CISRi
+ CISRi

 }

Fig. 4. Scenarios for Sub-Challenge 1 - Effect Chain 1

activations of task Task 10ms occur, all runnables R1 – R148
and interrupt service routines ISR 1 – ISR 3 of the first
activation consume their maximum processing time, and in
the second activation R1 – R106 and ISR 1 – ISR 3 consume
their minimum processing time.

A scenario for the upper bound is shown at the bottom of
Figure 4. Here, all runnables starting from R149 of the first
activation consume their maximum execution time. The overall
task execution is slightly longer than 10 ms, resulting in
ignoring the subsequent task activation (OSEK task activation
limit). Runnables R1 – R106 and interrupt service routines
ISR 1 – ISR 3 of the third activation consume their maximum
execution time as well.

B. Sub Challenge 1 - Second Effect Chain

In order to avoid state space explosion when analysing the
second effect chain, we exploit (1) a compositional analysis
approach in combination with an analytical analysis method
implemented by pyCPA [2], and (2) a trick. While the first
and last task of the effect chain are executed on Core 2,
the intermediate task Task 10ms is executed on Core 3. The
analysis is done in three steps. First, we obtain time bounds
for execution of task Task 10ms from its activation up to the
start event of runnable R19. Second, we create a ’placeholder’
task Task’ 10ms with execution time bounds according to the
results of the first step. The task is not allocated to Core 2,
causing the analysis to assume a distinct processing resource
solely assigned to the task, which hence executes without
any interferences. This way, the model provides a safe over-
approximation for imposed data flow latencies on the effect
chain. The same approach is applied to obtain time bounds
for execution of task Task 100ms from its activation up to
the start of runnable R7. To obtain these bounds we setup
a pyCPA model with all tasks from Core 2 having a higher
priority than Task 100ms. Again, we modelled a placeholder
task Task’ 100ms based on these results.

Concerning the ,,trick”, cooperative scheduling as in the
challenge can be considered as temporal priority inversion.
The maximum length of the inversion is no longer than the
highest maximum execution time among all runnables of
lower-priority tasks. This time is added to the execution time
of Task 100ms, which is again a safe over-approximation of
the actual behaviour.



Task_10ms

R8

Task_2ms

R19

min {C1-18} C19-end

max {C1-7} C8-end

Task_100ms
R7

C1-6 C7-end

Task_10ms
R19

C19-endC1-18

act act

(missed
 sample)

12ms + max {C1-7}

R8

act

Task_2ms

Fig. 5. Worst case scenario for Sub-Challenge 1 - Effect Chain 2

The first two analyses for the second effect chain in Table II
depicts the response time bounds for Task 10ms from activa-
tion until the start of runnable R19 and for Task 100ms from
activation until the start of runnable R7.

A scenario for the upper bound is shown in Figure 5.
Runnables R1 – R18 of task Task 10ms consume their min-
imum processing time. Runnable R19 is just started before
runnable R7 of task Task 100ms. So the effect influences
the next start of R19 in the next job of Task 10ms. Since
min{C1−18} > max{C1−7}, the job of task Task 2ms cannot
sample the data of the job of task Task 10ms starting at
the same time. Thus, the execution of R8 in the next job
of Task 2ms samples that data. In that job of Task 2ms the
runnables R1 – R7 consume their maximum processing time.

The calculated lower bound of 0 is due to the compositional
approach where task dependencies are lost. Therefore, the
start events of involved runnables can occur at the same time
instant, and the analysis has to assume that they might occur
in the order R7 → R19 → R8 with no delay inbetween.

C. Sub Challenge 1 - Third Effect Chain

For the third effect chain, we apply a similar approach as for
the second one. This time we insert placeholder tasks ISR 10
and Task’ 50ms. Again we use pyCPA to obtain the bounds
for execution of Task 50ms up to the start of its runnable R36.
ISR 10 however is the highest priority task running on Core
0. Hence, it is sufficient to model this task without a resource,
but with its core execution times. Concerning the ,,trick”,
time is added to the execution time of Task 50ms instead of
Task 100ms, which is the maximum execution time among all
runnables of Task 100ms, Task 200ms and Task 1000ms.

A scenario for the upper bound is shown in Figure 6.
Runnables R1 – R2 of task Task 2ms consume their minimum
processing time. Runnable R3 is just started before runnable
R3 of ISR 10. So the effect influences the next start of R3
in the next job of Task 2ms. Here again a data sample might
be missed and the invocation of runnable R36 in the next job
of Task 50ms results in the worst case scenario for the third
effect chain. In that job of Task 50ms the runnables R1 – R36
consume their maximum processing time.

The lower bound of the effect chain is 0 for the same reasons
as for the lower bound of the second effect chain.

ISR_10 Task_2ms Task_50ms
R3

C1-2 C3-end

R3

C1-2 C3-end

R36

max {C1-35} C36-end

Task_2ms
R3

min {C1-2} C3-end

(missed
 sample)

Task_50ms
R36

C1-35 C36-end

act act act

(missed
 sample)

50ms + max {C1-35}

Fig. 6. Scenarios for Sub-Challenge 1 - Effect Chain 3

TABLE II
RESULTS FOR SUB-CHALLENGE 1

Latency Bound/ Analysis
BCRT,WCRT Time Space

ISR 1 [15, 36] µs
ISR 2 [25, 54] µs
ISR 3 [37, 78] µs
Task 10ms [4.024, 11.871] µs
Effect Chain 1 [5.105, 19.524] µs 49 s 2 GiB
Task’ 10ms [315, 831] µs 41 s 1 GiB
Task’ 100ms [99, 39.890] µs 1 s 22 MiB
Effect Chain 2 [0, 11.826] µs 87 s 400 MiB
ISR 10 [13, 25] µs – –
Task’ 50ms [975, 39.029] µs 1 s 22 MiB
Effect Chain 3 [0, 89.015] µs 56 s 400 MiB

D. Sub Challenge 2

The second sub-challenge states that memory accesses of
runnables shall be taken into account. A comprehensive anal-
ysis would calculate exact bounds on the latencies imposed
by concurrent such accesses from tasks running on different
cores. As this is currently infeasible by our analysis, we have
to calculate safe approximations. This is however simple, as
all variables are mapped to the global memory bank. Hence
every memory access can be delayed by up to three other
memory accesses (from other cores). This results in an overall
latency of every memory access between 9 and 12 cycles.
Based on these adapted runnable execution times, the analysis
then follows the same scheme as for sub-challenge 1. The
results are shown in Table III

An interesting result is that the worst-case reaction time of
the second effect chain becomes lower when taking memory
accesses times into account. This is because the best-case
execution time of runnables R1 – R18 of Task 10ms increases,
resulting in a smaller time distance to the final reaction of the
effect chain.

E. Probabilistic Aspects

It is worth mentioning that the results we reported in this
section are only valid with a certain probability. This is due
to the fact that the execution times of the different runnables
are subject to random fluctuations. Within the model given



TABLE III
RESULTS FOR SUB-CHALLENGE 2

Latency Bound/ Analysis
BCRT,WCRT Time Space

ISR 1 [16, 37] µs
ISR 2 [27, 56] µs
ISR 3 [40, 82] µs
Task 10ms [4.247, 12.171] µs
Effect Chain 1 [5.042, 19.782] µs 62 s 2 GiB
Task’ 10ms [332, 854] µs 51 s 1.5 GiB
Task’ 100ms [104, 99.223] µs 1 s 22 MiB
Effect Chain 2 [0, 11.811] µs 848 s 750 MiB
ISR 10 [14, 26] µs – –
Task’ 50ms [995, 39.628] µs 1 s 22 MiB
Effect Chain 3 [0, 89.613] µs 54 s 400 MiB

for the challenge, these fluctuations are characterised by a
Weibull distribution. Specifically, the individual upper and
lower bounds on the execution times, which we used in
this section, mark intervals of execution times containing a
probability mass of 1 − 5 · 10−4. From this we can derive a
lower bound on the probability that the computed bounds hold.
More precisely, the computed bounds hold, if the execution
times of all runnables with random execution times fall
into their respective intervals. As the individual fluctuations
are assumed to be independent, this probability is given by
(1−5 ·10−4)1250. However, this is a rather pessimistic bound,
as the latency bounds could still hold, even if one or more
individual execution times lie outside of the intervals used.

V. DISCUSSION

The AMALTHEA4public project aims at defining a com-
prehensive meta-model for real-time systems with focus on the
automotive domain, being compliant with AUTOSAR where
possible. Tasks, for example, may contain call graphs, which
precisely define execution ordering of the runnables within
the tasks, as well as their internal behaviour in terms of
runnable items. From this point of view the model was easy
to understand. However, there is still room for interpretation.

First, it was an effort to retrieve the exact semantics of
stimuli. While the documentation of the A4P meta-model
defines precisely the semantics of periodic stimuli, definition
of sporadic stimuli is rather sloppy, and required clarification
by the challenge authors.

The second obstacle was the interpretation of cooperative
tasks. The OSEK standard defines various configurations,
resulting in different preemption scenarios for the entire task
set. It looks like the A4P meta-model either misses documen-
tation of the chosen interpretation or some bits of information
allowing to select the intended one. Furthermore, the A4P
meta-model defines the particular type ’schedule point’ of
runnable entity in order to explicitly define code positions
where cooperative tasks can be preempted. While no such
entities are defined in the model, the challenge authors state
that they should be implicitly assumed to exist.

In summary, it took about a day work, including reviewing
documentation, to understand model semantics as precise as
required for the analysis. No less time was required to set

up the analysis models. The main issue here was to find
suitable abstractions such that the analysis would fit into the
available memory space. While it would be possible to con-
struct a comprehensive analysis model also including memory
accesses for the entire system, it was clearly impossible to
get analysis results for such model in reasonable time and
space. Particularly memory accesses and preemption with
cooperative scheduling involved significant effort in tailoring
the models. As this is indeed somehow unsatisfactory, it
shows some deficiencies of the current analysis, and points
towards potential directions for further improvements, such as
improved combination of analytic and computational analysis.

VI. CONCLUSION

We presented a computational analysis approach for the
verification of timing characteristics of a non-trivial model
that is based on a real-world engine control application. As
always with computational approaches, the analysis soon starts
to suffer from state-space explosion for ,,interesting” system
sizes. However, as the analysis engine is particularly designed
for dealing with real-time scheduling problems, it already
shows nice performance compared to generic model-checking
approaches such as timed automata or SAT-based engines.

The model presented for the verification has some in-
teresting properties that are hard to encode with classical
analytic real-time scheduling approaches. We are convinced
that computational approaches can provide valuable results in
such cases. We strongly believe that this line of research is still
in its infancy and has much potential for further improvements.
Real-world problems such as the present are highly useful in
order to find sweet spots for such evolution.

REFERENCES

[1] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. TIMES:
a Tool for Schedulability Analysis and Code Generation of Real-Time
Systems. In In Proc. of FORMATS’03, number 2791 in LNCS, pages
60–72. Springer-Verlag, 2003.

[2] J. Diemer, P. Axer, and R. Ernst. Compositional Performance Analysis in
Python with pyCPA. In 3rd International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS), 2012.

[3] A. Hamann, D. Ziegenbein, S. Kramer, and M. Lukasiewycz. FMTV
2016 Verification Challenge. Robert Bosch GmbH Corporate Research,
Germany.

[4] K.Y. Jørgensen, K.G. Larsen, and J. Srba. Time-Darts: A Data Structure
for Verification of Closed Timed Automata. In Proc. of the 7th Interna-
tional Conference on Systems Software Verification (SSV), volume 102 of
EPTCS, pages 141–155. Open Publishing Association, 2012.

[5] S. Kramer, D. Ziegenbein, and A. Hamann. Real World Automotive
Benchmarks For Free. In Workshop on Analysis Tools and Methodologies
for Embedded and Real-Time Systems (WATERS), 2015.

[6] S. Perathoner, E. Wandeler, L. Thiele, A. Hamann, S. Schliecker, R. He-
nia, R. Racu, R. Ernst, and G. Harbour. Influence of Different System
Abstractions on the Performance Analysis of Distributed Real-Time
Systems. In Proc. Conference on Embedded Software (EMSOFT), 2007.

[7] I. Stierand, P. Reinkemeier, T. Gezgin, and P. Bhaduri. Real-Time
Scheduling Interfaces and Contracts for the Design of Distributed Embed-
ded Systems. In Proc. International Symposium on Industrial Embedded
Systems (SIES), pages 1–10, 2013.

[8] K. W. Tindell, A. Burns, and A.J. Wellings. An Extendible Approach for
Analysing Fixed Priority Hard Real-Time Tasks. Journal of Real-Time
Systems, 6(2):133–151, 1994.

[9] K.W. Tindell, A. Burns, and A.J. Wellings. Allocating hard real-time
tasks: An NP-Hard problem made easy. Real-Time Systems, 4:145–165,
1992. 10.1007/BF00365407.


