
FMTV 2016: Where is the Actual Challenge?
Alessio Balsini, Alessandra Melani, Pasquale Buonocunto, Marco Di Natale

Scuola Superiore Sant’Anna, Pisa, Italy
E-mail: {alessio.balsini, alessandra.melani, pasquale.buonocunto, marco.dinatale}@sssup.it

Abstract—The FMTV challenge has been formulated and
proposed to research groups as a case study and benchmark to
compare different analysis methods for real-time multicore fuel
injection applications. The nature of the problem is clear enough
and the challenge can be likely met by a set of conventional
analysis techniques (at least at the current level of description).
However, the formulation of the problem and its practical solution
are more than likely to reveal a number of additional issues
that go from the model of the application, to analysis techniques
that consider with much better precision the details of the HW
platform, to the need for synthesis and optimization methods.

I. INTRODUCTION

The FMTV 2016 challenge consists of a timing analysis
problem in which the AUTOSAR model of a set of cooperating
tasks in a fuel injection application is deployed onto a 4-core
platform. The objective of the challenge is to apply different
analysis methods (worst-case, simulation-based and possibly
stochastic) to models of the system with an increasing level
of accuracy with respect to the memory placement of commu-
nication variables. At the simplest level, memory access times
are simply neglected; next, different access times are assumed
under the hypothesis of global or local memory allocation;
and, finally, the problem of optimizing the placement of the
memory items is presented.

True to the spirit of the description, we tackled the objec-
tives of the challenge in a sequence, and because of timing
constraints, at the time of this submission, only the results
for some of the early activities were available. However, we
believe that in the case of this challenge, the experience
gathered along the path is at least as valuable as the final
solution, and we found several issues that are worth discussing,
beyond the presentation of the tool architecture that was used
to derive the solution and the hard data that we computed as
a result of the analysis.

From the architecture standpoint, we attempted two solu-
tions to the problem: to simulate the time behavior using
a scheduling simulator that was previously available at our
laboratory, and to analyze the task-set for its worst-case
behavior, using a set of formulas derived from the problem
description and obtained by adaptation of classical results.

We provide the results of these two analysis methods (with
an additional discussion on how to tackle the memory access
time problem), but we also believe several issues are worth
discussing. Among those:

The definition of response times when the system
contains chains of tasks or runnables communicating
asynchronously. The challenge refers to a set of definitions
(reactive and age) for which an application-level justification
is not clear enough and for which (despite being formally
presented in [1]) a solution in analytical closed form or as an

algorithm has never been presented and validated in a peer-
reviewed paper.

Next, while the challenge has the merit of restoring to the
foreground the consideration of hardware features and issues,
its description of the HW architecture details is still incom-
plete and simplistic. For example, the FIFO arbiter controlling
accesses to shared memory is likely to be integrated within the
crossbar or possibly placed after it, but this information can
only be guessed and would affect the access times to memory.

Finally, and most important, the problem probably placed
too much emphasis on the analysis part and seems to neglect
the runnables placement problem, which is most likely the
most relevant design issue for a system like this.

II. SYSTEM MODEL AND NOTATION

The challenge model is in large part compliant with the
AUTOSAR metamodel and adopts from it definitions and
most of the semantics for activation and communication of
functions (runnables in AUTOSAR). An attempt at the formal
characterization of the challenge model is the following.

A task τi is composed of an ordered sequence of ni
runnables ρi,1, . . . , ρi,ni

, each of which has its execution time
defined as a statistical distribution Ci, which is defined as a
truncated Weibull distribution for most if not all the runnables
in the model. For the purpose of worst-case analysis, the worst-
case execution time (WCET) Ci,j and a best-case execution
time ci,j may be computed from the distribution Ci.

The scheduling of each task is also controlled by its schedul-
ing mode (cooperative or preemptive) and its priority πi, with
preemptive tasks having higher priority than cooperative tasks,
and cooperative tasks only preempting each other at runnable
boundaries.

The model also defines deadlines that apply to tasks and task
chains. For tasks, deadlines bound the worst case completion
time with respect to the activation and match the common
definition of a relative deadline Di. Also, all tasks are assumed
to be periodic or sporadic, with a period or a minimum
inter-arrival time Ti. When applicable, relative deadlines are
constrained to be smaller than or equal to periods, i.e.,
Di ≤ Ti. In the end, we assume each task is defined by a
tuple (Ci, ci, Di, Ti), where Ci =

∑ni

j=1 Ci,j , ci =
∑ni

j=1 ci,j .
We denote as Ri,j the worst-case response time of the jth

runnable of task τi, while ri,j denotes its best-case response
time. hpP (i) and hpC(i) denote the set of preemptive and
cooperative tasks, respectively, having priority greater than τi.
We denote as hp(i) = hpP (i) ∪ hpC(i) the union of the two
disjoint sets.

As for end-to-end chains, the assumed model is based on the
asynchronous propagation of information by means of shared
data variables. These variables (labels in the model) are read
and written by the runnables.



Figure 1 illustrates the three effect chains that are analyzed
in the context of the challenge. Note that, in the third chain,
we replaced Label 2197 with Label 646 to fix a mistake in
the model (Label 2197 is not read nor written by the last two
runnables in the chain, while Label 646 is the only one that
satisfies the read/write relation imposed by the chain).

R10ms,149 R10ms,243 R10ms,272 R10ms,107 
Label 
3423 

Label 
3968 

Label 
2276 

R100ms,7 R10ms,19 R2ms,8 
Label 
4258 

Label 
2197 

R700/800us,3 R2ms,3 R50ms,36 
Label 
4576 

Label 
646 

a) 

b) 

c) 

Fig. 1: Effect chains in the model.

The following semantics have been considered for end-to-
end latency calculation (from [1]):
• Last-to-First (L2F): it considers the delay between the

last input that is not overwritten until the first output
generated with the same input;

• First-to-First (F2F) or Reactive: it considers the delay
between the first input that may be overwritten until the
first output generated with the next different input;

• Last-to-Last (L2L) or Maximum Age: it considers the
delay between the last input that is not overwritten until
the last output, considering duplicates.

The problem with this definition is that it is hardly formal,
and even in the original reference there seems to be no single
point in which a formal definition appears. Hence, we used
the following definitions.

Assume a chain of periodic communicating runnables Γ =
{ρ1, ρ2, . . . ρn}. Also, assume aj,h denotes the h-th activation
of runnable ρj , fj,h its finishing time, and Ij,h, Oj,h are the
sets of input and output values that are respectively read from
and written to the labels accessed by the h-th instance of ρj .

Then, the L2F latency of the chain Γ is the maximum value
fn,r−a1,p (finishing time of the r-th instance of ρn minus the
activation time of the p-th instance of ρ1), such that for some
p, q, r:

∀i = 1, . . . , (n− 2) Oi,p = Ii+1,q and Oi+1,q = Ii+2,r

and Ii+1,q 6= Ii+1,q−1 and Ii+2,r 6= Ii+2,r−1.

Similarly, the F2F latency of the chain Γ is the time interval
between the latest a1,p and the earliest fn,r+1 such that for
some p, q, r:

∀i = 1, . . . , (n− 2) Oi,p = Ii+1,q and Oi+1,q = Ii+2,r

and Ii+1,q 6= Ii+1,q+1 and Ii+2,r 6= Ii+2,r+1.

Finally, the L2L latency of the chain Γ is the maximum
value fn,r − a1,p (finishing time of the r-th instance of ρn
minus the activation time of the p-th instance of ρ1), such that
for some p, q, r:

∀i = 1, . . . , (n− 2) Oi,p = Ii+1,q and Oi+1,q = Ii+2,r.

Figures 2 and 3 exemplify the definitions in the case
of undersampling and oversampling effects, respectively. In
particular, referring to the chain {ρ1, ρ2, ρ3} in Figure 2, the
end-to-end delay by the L2F semantics corresponds to the time
interval between the activation a1,1 and the finishing time of
the runnable activated at time a3,1; the end-to-end delay by
F2F corresponds to the time interval [a1,1, f3,2]. By L2L, it
is measured as for the L2F semantics (i.e., f3,1 − a1,1). In
case of oversampling (Figure 3), the end-to-end delay can be
measured by the L2F semantics as f3,2 − a1,1; by F2F it is
f3,5−a1,1, while the L2L semantics accounts for the same data
read by multiple runnable instances (e.g., in the time interval
f3,4 − a1,1).

2/24

4/12

proc1

3/12

x x x

ρ1

ρ2

ρ3

a1,2

First-to-First (F2F)

Last-to-Last (L2L)

a1,3 a1,4

a2,1 a2,2

a3,1 a3,2

a1,1 a1,5

Last-to-First (L2F)

Fig. 2: End-to-end delay in the case of undersampling.

ρ1

ρ2

ρ3

a3,4

First-to-First (F2F)

Last-to-Last (L2L)

a3,5 a3,6

a2,2 a2,3

a3,3

a1,2
a1,3

a3,7

a1,1

a3,2a3,1

a2,1

Last-to-First (L2F)

Fig. 3: End-to-end delay in the case of oversampling.

The definition ambiguity leaves open a fundamental issue.
What is the actual meaning and relevance (in application
terms) of such definitions?

III. WORST-CASE LATENCY ANALYSIS

This section discusses the analytical approach to compute
the worst-case response times for tasks and chains, with and
without consideration of the timing for the access to (shared
and local) memory.

A. Analysis without memory access times
For any preemptive task, the worst-case response time of

runnable ρi,j is given by the fixed point iteration of the
following formula (starting with R0

i,j =
∑j
h=1 Ci,h):

Ri,j =

j∑
h=1

Ci,h +
∑

k∈hp(i)

⌈
Ri,j
Tk

⌉
Ck. (1)



The above formula quantifies the higher-priority interfer-
ence suffered by ρi,j by considering the synchronous periodic
arrivals of higher-priority tasks.

For cooperative tasks, the worst-case response time needs to
consider also the blocking time by lower-priority cooperative
runnables and the fact that the last runnable does not suffer
any preemption by higher-priority cooperative tasks once it
has started executing. In addition, by analogy with the limited
preemptive scheduling with fixed preemption points [2], it
is not enough to compute the response time of the first job
after the critical instant. In particular, the computation must be
carried out for all jobs s ∈ [1,Ki] falling within the so called
Level-i Active Period Li, such that Ki =

⌈
Li

Ti

⌉
. Therefore, in

case of a cooperative task τi, we can compute the worst-case
finishing time of the sth job of ρi,j by the fixed point iteration
of the following formula:

fsi,j =

j∑
h=1

Ci,h +Bi,j + (s− 1)Ci +
∑

k∈hpP (i)

⌈
fsi,j
Tk

⌉
Ck+

∑
k∈hpC(i)

(⌊
fsi,j − Ci,j

Tk

⌋
+ 1

)
Ck,

where
Bi,j = max

q∈lpC(i)
h=1,...,nq

Cq,h

represents the maximum blocking time imposed by lower-
priority cooperative tasks.

Then, the worst-case response time of ρi,j can be computed
as:

Ri,j = max
s∈[1,Ki]

fsi,j − (s− 1)Ti. (2)

Worst-case start time computation. Another quantity of
interest for the end-to-end latency computation is the worst-
case start time Si,j of runnable ρi,j . The calculation is the
same for both the case of preemptive and cooperative tasks,
and is given by:

Si,j = ε+

j−1∑
h=1

Ci,h +
∑

k∈hp(i)

⌈
Si,j
Tk

⌉
Ck, (3)

where ε is an arbitrarily small constant.

Best-case response time computation.
For preemptive tasks, the best-case response time of

runnable ρi,j is [3]:

ri,j =

j∑
h=1

ci,h +
∑

k∈hp(i)

(⌈
ri,j
Tk

⌉
− 1

)
ck. (4)

For cooperative tasks, a lower-bound on the best-case re-
sponse time can be computed by considering a zero blocking-
time from lower-priority tasks and the minimum amount of
interference from higher-priority tasks [3], [4]:

ri,j =

j∑
h=1

ci,h+
∑

k∈hpP (i)

(⌈
ri,j
Tk

⌉
− 1

)
ck+

∑
k∈hpC(i)

⌊
ri,j − ci,j

Tk

⌋
ck.

(5)

B. End-to-end Latency Calculation

The end-to-end latencies have been computed according to
the semantics reported in Section II. For each chain, we first
compute the end-to-end latency by the Last-to-First (L2F)
semantics, and then extend it to obtain the latencies by the
F2F and L2L semantics.
Last-to-First semantics. The end-to-end latency of chain
ρ1, . . . , ρN according to the L2F semantics can be computed
as:

N−1∑
i=1

(Ri + min(Ti+1 − ri+1, Ti)) +RN . (6)

First-to-First semantics. With respect to the L2F semantics,
in the F2F semantics we need to add one cycle delay for the
first runnable in the chain, in order to consider the previous
input. Therefore, the end-to-end latency of chain ρ1, . . . , ρN
according to the F2F semantics can be computed as:

T1 +

N−1∑
i=1

(Ri + min(Ti+1 − ri+1, Ti)) +RN . (7)

Additionally, the F2F semantics considers previous inputs that
are overwritten. In order to compute how many times in the
worst case an input is overwritten between consecutive stages
of the chain (i.e., between runnables ρi and ρi+1), we need to
find the largest possible integer n ≥ 1 that satisfies:

Ti+1 + Si+1 − ri+1 ≥ nTi + ri −Ri. (8)

This relation guarantees that the longest interval between two
consecutive reads is greater than the shortest interval between
n consecutive writes. If the above relation holds (i.e., input
overwriting takes place), we compute the end-to-end latency
of chain ρ1, . . . , ρN as:

T1 +

N−1∑
i=1

(Ri + nTi) +RN . (9)

Last-to-Last semantics. With respect to the L2F semantics,
the L2L also considers subsequent outputs that are overwritten.
In order to compute how many times in the worst case an
output is overwritten between consecutive stages of the chain,
we need to find the largest possible integer n̂ ≥ 1 that satisfies:

Ti − ri +Ri ≥ n̂Ti+1 − ri+1 + Si+1. (10)

This relation guarantees that the longest interval between
two consecutive writes is greater than the shortest interval to
perform n̂ consecutive reads. If the above relation holds (i.e.,
output overwriting takes place), we compute the end-to-end
latency as:

N−1∑
i=1

(Ri + n̂Ti+1 − ri+1) +RN . (11)

Otherwise, the end-to-end latency by the L2L semantics is as
the one obtained under the L2F semantics.



C. Analysis with memory access and arbitration times
In the proposed model, the four cores contend for access to

a shared global memory (GRAM) with FIFO arbitration. Each
read/write access to GRAM costs 9 cycles (there is no caching
effect). Therefore, in the worst case each memory access might
get blocked by pending accesses from other cores, i.e., each
access can be delayed for 9(m − 1) = 27 cycles. Adding
up the memory access cost for the current request, we obtain
a worst-case memory-access penalty of 36 clock cycles. By
exploiting the knowledge of how many labels are read/written
by each runnable, we can compute the worst-case memory
access latency for its read/write phases.

In the best case, memory accesses do not experience any
delays from other cores, leading to a best-case memory-access
time of 9 clock cycles. Accordingly, we can compute the best-
case memory access latency for the read/write phases.

Such values need to be added to the execution time of each
runnable, to which the analysis described in Section III-A can
be applied identically.

The worst-case estimate of 9(m−1) cycles implies that the
9 cycles access cost is repeatedly applied on each FIFO access,
which is most likely a pessimistic estimate given the lack
of detailed information on the HW (memory) configuration.
Careful consideration of the memory access costs require a
model of the execution HW more detailed than what is
typically available in scheduling analysis papers.

D. End-to-end Latency Calculation
The end-to-end latency calculation can be performed as

described in Section III-B, with the following differences.

Last-to-First semantics. Equation (6) is replaced by:
N−1∑
i=1

(Ri − rreadi+1 + min(Ti+1, Ti)) +RN , (12)

where rreadi denotes the best-case response time of the read
phase of ρi.

First-to-First semantics. (8) is replaced by:

Ti+1 + Si+1 − rreadi+1 ≥ nTi + ri −Ri. (13)

Last-to-Last semantics. (10) is replaced by:

Ti − ri +Ri ≥ n̂Ti+1 − rreadi+1 +Rreadi+1 , (14)

where Rreadi denotes the worst-case response time of the
read phase of ρi, which can be computed similarly as in
Section III-A.

E. Experimental Evaluation
In order to make the system analyzable, the WCETs of

those tasks that were not deemed schedulable by our analysis
were scaled down by considering the largest scaling factor
σ ∈ (0, 1] that guarantees schedulability. In particular, starting
from σ = 1, WCETs are iteratively scaled down in steps of
0.01 until the system becomes schedulable by the proposed
analysis. Table I reports the scaling factor σ for each task,
and the scaling factor σM obtained when memory access
and arbitration are accounted for. The analytical approach
described in Section III has been implemented in C++, and
the code is fully available online [5].

TABLE I: Scaling factors.

Task Core σ σM Task Core σ σM

ISR10 0 1 1 5ms 2 1 1
ISR5 0 1 1 20ms 2 1 1
ISR6 0 1 1 50ms 2 1 0.52
ISR4 0 1 1 100ms 2 0.28 0.12
ISR8 0 1 1 200ms 2 0.49 0.78
ISR7 0 1 1 1000ms 2 0.18 0.15

ISR11 0 1 1 ISR1 3 1 1
ISR9 0 0.58 0.29 ISR2 3 1 1
1ms 1 1 1 ISR3 3 1 1

Angle Sync 1 0.37 0.26 10ms 3 0.84 0.78
2ms 2 1 1

1) Effect Chain 1: In the effect chain 1: (i) all runnables
belong to the same task (Task 10ms, allocated to core 3),
hence all runnables are bound to the same rate; (ii) there
is backward communication between the third and the fourth
runnable, which implies a one cycle delay until the last datum
is read. Therefore, the worst-case end-to-end latency of this
effect chain by L2F can be computed as:

LL2F1 = T10ms +R10ms,107 = 13376 µs. (15)

Given that all runnables belong to the same task, this result is
valid also when considering the L2L semantics. As for the F2F
semantics, the analysis needs to consider a one cycle delay for
the first runnable, that is:

LF2F
1 = 2T10ms +R10ms,107 = 23376 µs. (16)

2) Effect Chain 2: Unlike the previous chain, runnables
in this chain belong to different tasks with different rates.
In this case, the end-to-end latency calculation should also
consider the over-sampling effect between pairs of consecutive
runnables. By the L2F semantics, applying Equation (6), we
obtain:

LL2F2 = R100ms,7 + min(T10ms − r10ms,19, T100ms)
+R10ms,19 + min(T2ms − r2ms,8, T10ms)

+R2ms,8 = 52222 µs

As for the F2F semantics, due to the over-sampling effect,
there are no input overwritings (Condition (8) is never veri-
fied), hence the end-to-end latency is simply given by:

LF2F
2 = LL2F2 + T100ms = 152222 µs.

Finally, the end-to-end latency computation for the L2L
semantics requires to verify Condition (10) for any pair of
consecutive runnables. In this case, we obtain n̂ = 13 for the
first stage and n̂ = 5 for the second stage, which yields:

LL2L2 = R100ms,7 + 13 · T10ms − r10ms,19 +R10ms,19

+5 · T2ms − r2ms,8 +R2ms,8 = 180222 µs.

3) Effect Chain 3: Also in this case, runnables belong
to different tasks with different rates. Task periods have
increasing values, leading to an under-sampling effect.

By the L2F semantics, applying Equation (6), we obtain:

LL2F3 = R700/800us,3+min(T2ms− r2ms,3, T700/800us)+
R2ms,3+min(T50ms−r50ms,36, T2ms)+R50ms,36 =41953 µs



Due to the sporadic nature of the first runnable, we assume
T700/800us = 800 µs in order to maximize latency.

The end-to-end latency by the F2F semantics requires to add
one cycle delay with respect to L2F and to verify Condition (8)
for any pair of consecutive runnables. In this case, we obtain
n = 2 for the first stage1 and n = 43 for the second stage,
which yields:

LF2F
3 = T700/800us + 2 · T700/800us +R700/800us,3+

43 · T2ms +R2ms,3 +R50ms,36 = 127553 µs.

Finally, the end-to-end latency for the L2L semantics is
equal to the L2F case, because no output is overwritten due
to the under-sampling effect.

Similar calculations are performed to compute end-to-end
latencies accounting for memory effects, as described in
Section III-C.

Table II summarizes the obtained end-to-end latencies cal-
culated according to the different semantics adopted, for each
of the two challenges.

TABLE II: End-to-end latency upper bounds (µsec) for the
first (I) and second (II) challenge.

Chain L2F I L2F II F2F I F2F II L2L I L2L II
1 13376 13383 23376 23383 13376 13383
2 52222 52796 152222 152796 180222 180796
3 41953 42448 127553 130040 41953 43248

IV. MODEL SIMULATOR

The analysis by simulation of the challenge model has been
performed by a purposely developed extension [6] [7] to the
C++ RTSIM [8] scheduling simulator.

A. Data Acquisition
The (engine control) application model that is the subject of

the challenge is defined by an XML file that can be parsed to
obtain the model data. The model information is then stored
in data structures internal to the simulator C++ classes.

Some of the model information requires a preliminary
elaboration, such as the execution time that is represented
by parameters of a Weibull distributions: the lower bound
(b), the upper bound (B), the mean (η), and the probability
of having values greater than the upperbound (ρ). Those
parameters must be converted to compute the standard Weibull
parameters: scale (λ) and shape (k). The transformation has
been performed considering that the cumulative distribution
function (CDF), given an uniformly distributed random vari-
able x, is null for x < 0 and for x ≥ 0 is defined as
CDF (x) = 1− e−(x/λ)k . By considering that for x = B− b,
it is possible to obtain CDF (B − b) = 1− ρ, and after per-
forming some substitution it is possible to define λ =

k
√
− ln ρ
B−b .

The mean value of a Weibull distribution is calculated as
η = λΓ

(
1 + 1

k

)
, and, by substituting the first result in the

second equation, we obtain
k
√
− ln ρ
B−b Γ

(
1 + 1

k

)
− η = 0.

The approach followed by the simulator described in this
paper to obtain an approximation of the k parameter is

1This calculation considers T700/800us = 800 µs, since this value
maximizes the latency of the given effect chain.

to minimize the absolute error of the previously described
function

min
k>0

∣∣∣∣ k
√
− ln ρ

B − b
Γ

(
1 +

1

k

)
− η
∣∣∣∣. (17)

The function minimum is obtained by using the GNU
Scientific Library [9].

B. Cores, Kernels and Schedulers

In RTSIM the main entity for scheduling simulations is
the Kernel. Each Kernel has an associated Core. Once a
Kernel is instantiated, the programmer assigns a Scheduler
to it. Among the different available schedulers, the one used
for the challenge is the fixed priority scheduler. In RTSIM,
partitioned multi-core scheduling is obtained by instantiating
multiple Kernel objects, one for each core.

C. Tasks

Each task τi in RTSIM is defined by its parameters: the
activation time of first job (ai,0), its relative deadline (Di), its
period or minimum inter-arrival time (Ti), and the sequence
of instructions it executes, each defined by an execution
time specification (deterministic or random). For any periodic
task, the activation time of each job is computed by adding
Ti to its last activation time. For sporadic tasks, a random
value in the range [Ti, T

max
i ] is added to the last activation

time, where Tmaxi denotes the maximum inter-arrival time
of τi. Relative deadlines are set equal to Ti. As for the
job instructions, each task executes a sequence of runnables.
According to the RTSIM syntax, we defined a new instruction
“runnable(runnableName)”, and the code of each task is of the
form
runnable(r1);runnable(r2);...runnable(rN);

D. Runnables

Cooperative tasks preempt lower priority cooperative tasks
only at runnable borders, while higher priority preemptive task
can preempt any lower priority task and runnable. In the case
of cooperative tasks, preemption within runnables is prevented
by locking and unlocking a core-specific mutex dedicated to
cooperative tasks before and after calling a runnable. The
resulting job code for a cooperative task is:
...lock(muxC);runnable(rX);unlock(muxC)...
When a job calls a runnable instruction, the operations

performed, in order, are the following: updating end-to-end
statistics associated to labels reading events, virtually execut-
ing the runnable computations, updating end-to-end statistics
associated to labels writing events.

E. Results

All the simulation runs performed for the challenge sys-
tem produced the following: (i) Complete traces of the task
scheduling events; (ii) F2F and L2L end-to-end delays of each
chain; (iii) Response times of all runnables involved in each
chain. The system simulation was performed collecting sample
runs for different initial offsets of the tasks. For periodic tasks,
the initial offsets are uniformly selected in the interval [0, Ti],
while for sporadic tasks they are chosen in [0, Tmaxi ]. The
execution of the tasks has been simulated for a total virtual
time of one hour. The simulation required 28 minutes and 50



Fig. 4: End-to-end delays obtained by simulation.

seconds on a system with an Intel i7-2630QM core running at
2 GHz and 8 GB of DDR3 RAM running at 1333 MHz.

Figure 4 represents the distribution of the F2F and L2L
latencies for each chain. For the first chain, the maximum end-
to-end delays measured by simulation are 22377 µs for F2F
and 12377 µs for L2L. For the second chain, the maximum
end-to-end delays measured by simulation are 109.26 ms for
F2F and 107.26 ms for L2L. In the end, the simulation returns
61324 µs for F2F and 3139.4 µs for L2L as maximum end-
to-end delays for the third chain.

Additionally, Table III establishes a comparison between
the worst-case response times of the runnables by the worst-
case latency analysis of Section III (WCRT), which takes into
account the scaling factors computed in Table I to guarantee
schedulability, and the maximum response times observed
during our simulations (SIM).
TABLE III: Worst-case response times (µsec) for the first (I)
and second (II) challenge.

Runnable WCRT I WCRT II SIM I
R10ms,149 5176 5144 3556
R10ms,243 7919 7903 5431
R10ms,272 8896 8879 6139
R10ms,107 3376 3383 2377
R100ms,7 39647 39865 6992
R10ms,19 770 781 577
R2ms,8 142 150 122

R700/800us,3 30 33 27
R2ms,3 49 53 46
R50ms,36 39074 39562 11151

The evaluation of the memory access costs rquires further
extensions to the simulation engine that could not be com-
pleted in time for this paper.

V. CONCLUSIONS

In this paper, we proposed two solutions for the timing ver-
ification problem of the FMTV challenge. The first approach
builds a mathematical model of the system and calculates
worst-case latencies by adaptation of existing response time
analysis techniques. Upper bounds on the end-to-end latencies
are derived by first ignoring and then including memory access
times. Then, a simulator of the given AUTOSAR model has
been built on RTSIM to compute end-to-end latencies of the
selected effect chains.

REFERENCES

[1] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson, “A compositional
framework for end-to-end path delay calculation of automotive systems
under different path semantics,” in CRTS, 2008.

[2] G. Buttazzo, M. Bertogna, and G. Yao, “Limited preemptive schedul-
ing for real-time systems. A survey.” IEEE Transactions on Industrial
Informatics, vol. 9, no. 1, pp. 3–15, 2013.

[3] R. Bril, “Existing worst-case response time analysis of real-time tasks un-
der fixed-priority scheduling with deferred preemption is too optimistic,”
CS-Report 06, vol. 5, 2006.

[4] R. Bril and W. Verhaegh, “Towards best-case response times of real-
time tasks under fixed-priority scheduling with deferred preemption,” in
ECRTS, WiP session, 2005, pp. 17–20.

[5] A C++ implementation of schedulability analysis and end-
to-end latency calculation for WATERS Challenge 2016,
http://retis.sssup.it/%7Eal.melani/downloads/FMTV-analysis.zip, 2016.

[6] “MetaSim2.0 event-based simulator,” https://github.com/balsini/
metasim2.0, accessed: May 17, 2016.

[7] “RTSIM real-time system simulator extended for waters challenge 2016,”
https://github.com/balsini/waters/, accessed: Branch 2016.

[8] “RTSIM real-time system simulator,” http://rtsim.sssup.it/, accessed: Ver-
sion 2.0.

[9] “GSL gnu scientific library,” https://www.gnu.org/software/gsl/, accessed:
Version 1.16.


